

Segmentation using Sparse Shape Composition and Minimally Supervised Method in Liver Surgery Planning System

Guotai Wang¹, Shaoting Zhang², Lixu Gu¹

¹ School of Biomedical Engineering, Shanghai Jiao Tong University, China
 ² Rutgers University, Department of Computer Science, United States

上海交通大學 Background: Liver Surgery Planning

SHANGHAI JIAO TONG UNIVERSITY

上海える大学 Background: Liver Surgery Planning

SHANGHAI JIAO TONG UNIVERSITY

Challenges of Segmentation

上海え通大学
Background: Statistical Shape Model

Statistical shape model

- Better performance than methods using appearance cues
- Address over-segmentation and under-segmentation
- Problems in modeling liver shape
 - Complex variation
 - gross errors and outliers
 - local details

- Ist, Sparse Shape Composition(SSC)
 - Learn the shape from the shape repository
 - optimized sparse linear combination of shapes in the repository
 - Explicitly model gross errors

$$= x_1 + x_2 + x_3 + \dots + x_n$$

- Ist, Sparse Shape Composition(SSC)
 - Learn the shape from the shape repository
 - optimized sparse linear combination of shapes in the repository
 - Explicitly model gross errors

$$= x_1 + x_2 + x_3 + \dots + x_n$$

- Ist, Sparse Shape Composition(SSC)
 - Learn the shape from the shape repository
 - optimized sparse linear combination of shapes in the repository
 - Explicitly model gross errors

$$= x_1 + x_2 + x_3 + \dots + x_n$$

- Ist, Sparse Shape Composition(SSC)
 - Learn the shape from the shape repository
 - optimized sparse linear combination of shapes in the repository
 - Explicitly model gross errors

$$\underset{x,e,\beta}{\operatorname{arg\,min}} \|T(y,\beta) - Dx - e\|_{2}^{2} + \lambda_{1} \|x\|_{1} + \lambda_{2} \|e\|_{1}$$

Assumption

Sparse representation of training shapes

Gross errors are sparse

[®] 2nd, Accurate segmentation

- Shape prior + Fast Marching Level Set
- Seeds points results from histogram analysis

Shape repository: manually segmented result for training (50 shapes)

Initial liver segmentation: Simple region growing method

Output of SSC: robustness to outliers

The initial segmentation results (a, c) and their corresponding shape priors (b, d).

Compare with PCA

Input shape

PCA shape prior

SSC shape prior

Both reconstruct under-segmentation

Segmentation results

Accurate segmentation of hepatic parenchyma, portal veins and hepatic veins.

Compare with PCA

Local detail is lost

Local detail is preserved

Segmentation results

Accurate segmentation of hepatic parenchyma, portal veins and hepatic veins.

Segmentation results:

Evaluation (8 patients)

Sensitivity and specificity

	hepatic parenchyma	portal veins	hepatic veins	tumours
Sensitivity	0.902	0.878	0.925	0.896
Specificity	0.961	0.983	0.994	0.987

symmetric surface distance (ASD), mm

hepatic parenchyma	portal veins	hepatic veins	tumours
1.08	1.06	0.90	1.15

$$ASD(A,B) = \frac{1}{|S(A)| + |S(B)|} \left(\sum_{S_A \in S(A)} d(S_A, S(B)) + \sum_{S_B \in S(B)} d(S_B, S(A)) \right)$$

Conclusion

Advantage of Sparse Shape Composition for liver

- Model the complex variation of liver
- Address outliers and preserve details
- The proposed segmentation framework
 - Accurate segmentation of liver and intrahepatic vessels
 - Robust to clinical liver image data

Reference

1. Guotai Wang, Shaoting Zhang, Feng Li, Lixu Gu. A new segmentation framework based on sparse shape composition in liver surgery planning system, Medical Physics, Vol. 40, No. 5, May 2013

Thanks

- Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: Sparse shape composition. Medical image analysis (2011)
- Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Sparse shape composition: A new framework for shape prior modeling. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1025-1032. IEEE, (2011)
- 4. Li, F., Bartz, D., Gu, L., Audette, M.: An iterative classification method of 2D CT head data based on statistical and spatial information. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1-4. IEEE, (2008)
- 5. Shen, D., Herskovits, E.H., Davatzikos, C.: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. Medical Imaging, IEEE Transactions on 20, 257-270 (2001)
- Heimann, T., Van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G.: Comparison and evaluation of methods for liver segmentation from CT datasets. Medical Imaging, IEEE Transactions on 28, 1251-1265 (2009)