

Implementation of Medical Image Segmentation in CUDA

Lei Pan1, Lixu Gu1*, Jianrong Xu2*
1School of software, Shanghai Jiaotong University, P.R.China,

 2Shanghai Renji Hospital, Shanghai, P.R.China

Abstract— As the fast development of GPU, people tend to
use it for more general purposes than its original graphic
related work. The high parallel computation capabilities of
GPU are welcomed by programmers who work at medical
image processing which always have to deal with a large scale of
voxel computation. The birth of NVIDIA® CUDA™ technology
and CUDA-enabled GPUs brought a revolution in the general
purpose GPU area. In this paper, we propose the
implementation of several medical image segmentation
algorithms using CUDA and CUDA-enabled GPUs, compare
their performance and results to the previous implementation in
old version of GPU and CPU, indicate the advantages of using
CUDA technology and how to design algorithm to make full use
of it.

Keywords— CUDA, GPU, Segmentation, Region Growing,
Watershed

I. INTRODUCTION
ompared to CPU, GPU has more powerful performance
in parallel processing and lots scholars had studied the
GPU-based image processing[1] and visualization[2]

recent years. It is showed in the related researches that GPU
technologies (Cg, HLSL, etc.) are powerful weapons in
dealing with computation of large scales of data in the
medical image processing field. However, such previous
GPU technologies always bring difficult and massive
programming work. The limitation in the languages and the
native insufficiency of the design may cause unclear coding,
imprecise computation and instable system. For example, in
previous GPU and related technologies, data types are based
on the size of the registers in GPU memory. Compared to
CPUs they offer only a limited instruction set consisting
primarily of mathematics operations which are often graphics
specific and in general accept as input a limited number of
32-bit floating point 4-vectors. The fragment processor can
output only 4 floating point 4-vectors, usually representing
colors [3]. This defect may result in a large scale of waste of
memory allocation for unnecessary computation and lead to
inefficiency. Codes, variables and procedures that handle
data input/output transfer between host and device are fixed.
Data computation and parallel arrangements inside the device
are rigid and difficult to learn.

In 2007, the birth of NVIDIA® CUDA™ technology and
CUDA-enabled GPUs brought a revolution in the general

purpose GPU area. NVIDIA® CUDA™ technology is a
fundamentally new computing architecture that enables the
GPU to solve complex computational problems in consumer,
business, and technical applications. CUDA (Compute
Unified Device Architecture) technology gives
computationally intensive applications access to the
tremendous processing power of NVIDIA graphics
processing units (GPUs) through a revolutionary new
programming interface. CUDA also provides orders of
magnitude more performance and simplifies software
development by using the standard C language [4].

Lei. Pan, Lixu. Gu(e-mail: gu-lx@cs.sjtu.edu.cn) are with the Laboratory of
Image Guided Surgery Therapy (IGST), Shanghai JiaoTong
University(SJTU), China.
*Lixu Gu and Jianrong Xu are Corresponding Authors.

Segmentation is a fundamental problem in the medical
image analysis. The general segmentation problem is the
process of partitioning an image or data-set into a number of
homogeneous segments [5]. Although the methods of image
segmentation have been improved significantly recently, it is
still a very difficult problem in practice [6].

In this paper, CUDA technology is employed to implement
different segmentation algorithms over real medical images
in the experiments and the results are listed. A comparison
between CUDA and previous GPU technologies are held.
Advantages and disadvantages over CUDA are analyzed.

II. METHODOLOGY

A. Memory arrangement
In CUDA framework, the GPU is viewed as a compute

device capable of executing a very high number of threads in
parallel. The large scale of original resource data in different
format (float, double, int, long, short, etc.) are uploaded from
host to device at a higher speed than previous GPU version
and then stored as an array in the global memory of the device.
It is totally up to programmer to manipulate and access the
data array agilely through thread block and grid of thread
blocks, which are organized inside the GPU device by CUDA.
For example, we can assign a grid of 512*256 (2 dimension)
blocks with 512*1*1 (viewed as 1 dimension) threads inside
each of its block for a 512*512*256 resource brain image.

Once the threads and blocks assignment is done, the
position of each thread can be directly located by using
threadIdx and blockIdx where threadIdx.x, threadIdx.y and
threadIdx.z respectively stand for the current thread index of
X, Y, Z dimension inside the current block and blockIdx.x,
blockIdx.y respectively stand for the current block index of X
and Y dimension inside the current grid. In above example,
let length be 512 (the first dimension in the block), let width

C

978-1-4244-2255-5/08/$25 ©2008 IEEE

Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, in conjunction with
The 2nd International Symposium & Summer School on Biomedical and Health Engineering
Shenzhen, China, May 30-31, 2008

82

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:10:35 UTC from IEEE Xplore. Restrictions apply.

be 512 (the first dimension in the grid), then concurrent
access to each voxel of the image can be easily realized by

xthreadIdxlengthxblockIdxwidthyblockIdxoffset .)..(+⋅+⋅= (1)
GPU data allocation schemes vary according to different

segment methods. Multiple blocks schemes reduce thread
cooperation, because threads in different thread blocks from
the same grid cannot communicate and synchronize with each
other. In this situation, all data operations are not completely
parallel. A device usually runs all the blocks of a grid
combining both sequentially and in parallel. Compared to the
previous example, a balance factor n, which stands for the
voxel number that each thread handles, is introduced to
control the amount of serial processing in each parallel
processing thread.

))((),(),,(tlnsyncsyncT jithreadzyxthread ⋅⋅=

∑∑
= =

<<
i

x

j

y
yxjithreadyx KKsyncK

1 1
,),(,)()max(

Here K stands for the time cost of each thread operation,
syncthread(i,j) (K）stands for the total time cost in synchronizing
a block with ji ⋅ threads. Another symbol l stands for the
number of the operation that each voxel requires and symbol
 stands for the average time cost of a single operation. The

restriction on block dimension (x,y,z) and thread dimension
(i,j) varies on different NVIDIA GPU hardware types.
Basically there are fixed upper bounds for x*y*z blocks and
i*j threads. Let the total voxel number in the resource medical

image be v, then jizyx
n
v

⋅⋅⋅⋅= . Since x, y, z, i, j depend

on the hardware and l, t depend on the algorithms we design,
our goal is to find a proper n which results a minimum time
cost T in both the parallel and serial processing.

B. Segmentation algorithms implementation

Segmentation algorithms can be divided in to two major
groups as model based and region based [7]. We select and
implement region growing and watershed methods of region
based group as a test of CUDA implementation in
segmentation field. The level-set method [8] of model based
group and other complex algorithms are still under test.

1) Region Growing: In order to make full use of the parallel
computation capability of GPU, it is recommended to select
as many seeds of different parts of the image as possible.
Region growing starts from each seed inside the image. We
compare and label all six neighbors (up, down, left, right,
front, back) of each voxel based on intensity or other defined
rules. Data of each voxel can be conveniently located in
CUDA by using (1) since the image data has been allocated
into GPU memory according to a specific scheme. In the
example of (1), the offset of six neighbors of each voxel in the
GPU memory can be easily calculated by

lengthoffsetback
lengthoffsetfront

lengthwidthoffsetdown
lengthwidthoffsetup

offsetright
offsetleft

+=
−=

⋅+=
⋅−=

+=
−=

1
1

（2）

However, multiple seeds can lead to over growing problem
and growing competition. In order to solve the over growing
problem in some images where different parts still have
connections after the thresholding, several times of erosion
and dilation can be of great help[9]. Both erosion and dilation
operation need six neighbors information from (2) in order to
decide whether current voxel is eroded or dilated.

Since the cost of adding seeds are not as expensive as in
CPU, we can easily regain the lost parts in the branches which
are missing during the erosion by adding a seed there. New
Seeds

),('),,(21211 nnn SSSGSSSGS LL −∈+
Here Sn stands for seed voxel, G(S1,S2 … Sn) stands for the

result voxel set after region growing without erosion and
dilation from seeds S1, S2 … Sn. G’(S1,S2 … Sn) stands for the
result voxel set after region growing using erosion and

Fig. 2. Region growing on a 512*512*289 abdomen image with 7
seeds located in different parts of the image after 120 iterations by
CUDA on NVIDIA Geforce 8500 GT. The result includes heart(red),
artery(green) and bone(silver). In this experiment, when n=3*3*3, the
total time cost reaches the minimum 12.875 seconds.

Fig. 1. Medical image data allocation for memory arrangement in
CUDA. Three dimensional original medical images (CT, MR, etc.)
composed by a series of slices are organized in blocks of threads and
grids of blocks. The number of elements that handled by a single thread
is easily and completely decided by programmers.

83

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:10:35 UTC from IEEE Xplore. Restrictions apply.

dilation from seeds S1, S2 … Sn.

The final segmentation result is stored in an array of
specific data type in GPU memory, which is to be transferred
back to host CPU when display is needed.

2) Watershed: Like common watershed algorithm, gradient
values of the original image are obtained and gauss blurring is
deployed before immerse the lowest gradient. Both
operations can be conveniently achieved in GPU by some
widespread methods. Watershed algorithm starts with
immersing from the lowest gradient value voxel instead of
region growing from seeds [10]. The immersing rule also
takes neighbor voxel into consideration:

(1) When all neighbors has not been labeled (at the higher
level), then current voxel is labeled as a new basin.

(2) When all labeled neighbors belong to the same basin or
watershed line, label the current voxel as the same basin with
its neighbor.

(3) When two labeled neighbors belong to different basin
exist, label the current voxel as the watershed line.

Since CUDA can exactly handle and locate each voxel in
the device at the same time. It is no need to sort the gradient
value and create a FIFO queue to handle the waiting voxel in
the iteration. However, the previous serial watershed
algorithm is not suitable for the parallel computational ability
of CUDA. Over segmented problems are more serious after
immersing operation in CUDA because basin number
increases during the parallel labeling. Some data structures

have been abandoned and improvement and adjustment in
immersing step has been made.

In order to solve the common over segmented problems in
watershed method, the multi-level immersing watershed
method [7] can be improved to be implemented in our
experiment.

),(' hpDiffhh +=

Fig. 3. Region growing on a 256*256*256 brain image with 6 seeds
after 40 iterations by CUDA on NVIDIA Geforce 8500 GT. In this
experiment, when n=1*1*1, the total time cost reaches the minimum
2.435 seconds

The new height h’ of the gradient value of each voxel to be
immersed in current iteration is the previous h plus Diff(h,p),
where

∑
≥∈

−=
),(),()}(,{

/)),(),((),(
hqIhpIpNpq G

nhqIhpIhpDiff
I

 [11]

Here Diff(p,h) is dynamically calculated after each
immersing iteration. I(p,h) and I(q,h) respectively stand for
the intensity or gradient value of the voxel set p and their
neighbor voxel sets q at the current height h. NG(p) stands for
the neighbor area within a specific distance from voxel p in
the graphic G. The computation of large scale sum of the I(p,h)
and I(q,h) of the whole image makes full use of the parallel
capability of CUDA.

After immersing to the highest gradient voxel, watershed
algorithm stops. Post processing includes merging some
basins and remove irrelevant watershed lines.

III. EXPERIMENTAL RESULTS

Fig. 5. Result after manually combining specific regions of Fig. 4.
Related regions are selected by users in the post process step. Selected
regions are combined and marked with different colors (blue, green,
gray, brown) according to different requirements for diagnostic uses.

Fig. 4. Multi-degree immersing watershed method on the same image
of Fig. 3. Superabundant regions (2871 regions in this image) caused
by over segmented is still a serious problem in this image although
multi-degree immersing watershed method is employed and efficiency
is improved. However, such problem is more acceptable in small
images like brain than in large images like abdomen. In order to get the
specific region, post processes on this result is needed. Interactive and
manual operation is also provided to users.

Our experiments of different segmentation algorithms are
employed on NVIDIA Geforce 8500 GT with 256MB global
memory. Other configurations are Windows-XP Professional
operation system, Intel Pentium D 2.80GHz, 1.50GB RAM.

A. Region Growing
In region growing algorithm, thresholding, erosion and

dilation are employed on abdomen image (Fig. 2) and brain
image (Fig. 3). It is indicated in the experimental result that
CUDA takes little advantage on efficiency over Cg on large
size data. However, CUDA has an obviously better
performance on multiple seeds growing for multiple parts in a
single image than serial CPU.

B. Multi-Degree Immersing Watershed
In multi-degree immersing watershed algorithm,

immersing rules are strictly followed although the current
immersing height is dynamically calculated every iteration. In

84

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:10:35 UTC from IEEE Xplore. Restrictions apply.

this experiment, Cg technology was not employed because of

lack of resource. Experiment on abdomen image returns an
unsatisfied result with large amount of over-segmented
regions and needs additional post process. However, the
result of CUDA and CUDA-enabled GPU on brain image
(Fig. 4) apparently exceeds the result of CPU that proposed
by Shengcai Peng[11]. It is showed in the result (2871
regions left) that although CUDA technology can improve the
parallel computation, this feature is not entirely suitable for
multi-degree immersing algorithm. Post process[11], which
includes region selection, combination and other operations
(Fig. 5), is recommended for diagnostic uses.

IV. CONCLUSION
In this paper, we introduced novel implementations of

segmentation algorithms based on a novel technology and
new type hardware. Using CUDA technology and
CUDA-enabled GPUs we can easily implement basic
segmentation algorithms in different operating system and
integrate them into different framework. However, the
advantages in performance and efficiency on CUDA over old
version GPU with Cg or HLSL and simply CPU depend on
several factors.

1) Allocate the voxel data of the resource medical image
into threads in GPU memory properly. Try to handle as much
data as possible at each computational iteration cycle and try
to balance the parallel processing and serial processing.

2) Make full use of every block in the limited grids, since
the limitation of number and dimension of the threads in a
block is more rigid than the limitation of the blocks in a grid. TABLE I

Experiment on Region Growing Method

Hardware
configuration

ABDOMEN IMAGE /
512*512*289

Brain image /
256*256*256

CUDA / NVIDIA
Geforce 8500 GT

12.875 sec (7 seeds,
120 iterations)

2.435 sec (6 seeds, 40
iterations)

Cg / NVIDIA
Geforce 6800

13.62 sec (16 seeds,
120 iterations)

4.42 sec (16 seeds, 60
iterations)

Intel Pentium D
2.80GHz

21.034 sec(7 seeds,
100 iterations)

Not implemented

Experiment using Intel Pentium D CPU on brain image was not
implemented.

In the experiment of region growing method, the number and position of
seeds are selected by user.

Future work includes improvement of the current
segmentation algorithms to be better implemented in new
CUDA standard 1.1. Another work is to design more efficient
methods and implement more complex algorithms like
level-set and Snake.

ACKNOWLEDGMENT
This paper is partially supported by the Chinese National

Natural Science Foundation under Grant No. 30770608,
Chinese National 863 research foundation under Grand No.
2007AA01Z312 and the National Fundamental Research
Program (973) under Grant No. 2006CB504801 and
2007CB512701. The authors would like to thank Sizhe Lv
and Pengfei Huang for their suggestions to the work.

TABLE II
Experiment on Multi-Level Watershed Method

Hardware
configuration ABDOMEN IMAGE Brain image

CUDA / NVIDIA
Geforce 8500 GT

155.965 sec
(512*512*289)

45.223 sec
(256*256*256) 2871
regions

Pentium 4
2.4GHz, 2GB
RAM

Not implemented 115 sec
(181*217*181) 850
regions

Experimental result of Pentium 4 CPU on a 181*217*181 brain image is
proposed bv Shengcai Peng[11].

Result of CUDA on 512*512*289 abdomen image does not include
0.281 sec + 0.293sec data transfer times.

Different data arrangements cause different memory allocations. While it
is out of memory on GPU for a whole image, user needs to separate the data
into parts and transfer them between host and device one by one.

Time cost in post process of the brain image is not included in the result.

REFERENCES
[1] I. Buck, “GPGPU: General-purpose computation on graphics hardware

- GPU computation strategies & tricks.” ACM SIGGRAPH Course
Notes, 2004.

[2] Yang Heng and Lixu Gu, “GPU-based Volume Rendering for Medical
Image Visualization”, Proceedings of the 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference Shanghai, China,
September 1-4, 2005

[3] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr¨uger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” in Proceedings of Eurographics 2005 - State of the
Art Reports, pp. 21–51, Aug. 2005. Dublin, Ireland, August 29 –
September 2.

[4] NVIDIA® Corporation. (2007, June, 23). NVIDIA CUDA
Programming guide version 1.0. Available:
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_C
UDA_Programming_Guide_1.0.pdf

[5] Yang, F., Gu, L., Xu, J., Yang, J.: The methodology of multi-level
watershed 3D medical image segmentation. Int J CARS, 2006,
1:461-485

[6] Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis,
R.: Automated segmentation of mri of brain tumors. Radiology 218
(2001) 586–591

[7] Lefohn, A., Cates, J., Whitaker, R.: Interactive, GPU-based level sets
for 3D brain tumor segmentation: Supplementary information.
http://www.sci.utah.edu/˜lefohn/work/rls/tumorSeg (2003)

[8] A. E. Lefohn and R. T. Whitaker, “GPUbased, three-dimensional level
set solver with curvature flow,” technical report uucs-02-017, School of
Computing, University of Utah, 2002. Available:
http://graphics.cs.ucdavis.edu/~lefohn/work/rls/gpuLevelSet3D-TR.pd
f.

[9] L.Gu, T.Kaneko, “Extraction of Organs Using Three-Dimensional
Mathematical Morphology”, Systems and Computers in Japan,
Vol.31-7, 2000, pp.29-37.

[10] S. Beucher and F. Meyer, “The morphological approach to
segmentation: The watershed transform,” in Mathematical Morphology
in Image Processing, E. R. Dougherty, Ed. New York: Marcel Dekker,
1967

[11] Shengcai, P., Lixu, G.: A Novel Implementation of watershed
Transform using Multi-Degree Immersion simulation, 2005, 27th
Annual International Conference of IEEE Engineering in Medicine and
Biology Society.

85

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:10:35 UTC from IEEE Xplore. Restrictions apply.

