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An Improved Level Set for Liver Segmentation
and Perfusion Analysis in MRIs

Gang Chen, Lixu Gu, Member, IEEE, Lijun Qian, and Jianrong Xu

Abstract—Determining liver segmentation accurately from
MRIs is the primary and crucial step for any automated liver
perfusion analysis, which provides important information about
the blood supply to the liver. Although implicit contour extraction
methods, such as level set methods (LSMs) and active contours, are
often used to segment livers, the results are not always satisfactory
due to the presence of artifacts and low-gradient response on the
liver boundary. In this paper, we propose a multiple-initialization,
multiple-step LSM to overcome the leakage and over-segmentation
problems. The multiple-initialization curves are first evolved sepa-
rately using the fast marching methods and LSMs, which are then
combined with a convex hull algorithm to obtain a rough liver
contour. Finally, the contour is evolved again using global level set
smoothing to determine a precise liver boundary. Experimental
results on 12 abdominal MRI series showed that the proposed ap-
proach obtained better liver segmentation results, so that a refined
liver perfusion curve without respiration affection can be obtained
by using a modified chamfer matching algorithm and the perfusion
curve is evaluated by radiologists.

Index Terms—Level set methods (LSMs), liver perfusion analy-
sis, liver segmentation, multiple initializations.

I. INTRODUCTION

L IVER PERFUSION is a quantitative measurement of the
blood flow in the liver, and plays an important role in pro-

viding information for the assessment and treatment of various
liver diseases. For example, it can be used as a noninvasive
and repeatable technique in assessing the probability of acute
rejection in liver transplants [1]. By injecting a contrast agent
into blood vessels of the liver while taking abdominal MRIs
in fixed time intervals, the concentration of the contrast agent
can be recorded as a perfusion curve. However, in a clinical
setting, the main challenge is the liver motion due to the pa-
tient’s respiration during the liver perfusion procedure, which
causes fluctuation of the perfusion curve’s position across the
image series and adversely affects the appearance of the perfu-
sion curve. Since it is impractical to ask patients to hold their
breaths during the lengthy procedure, the attending radiologist
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must manually mark the perfusion position across the entire
image series, which is tedious and time-consuming. Therefore,
there is an urgent need to automate the liver perfusion analysis
and measurement process. However, we must first achieve pre-
cise liver segmentation before attempting any automatic liver
perfusion analysis [2], [3].

Medical image segmentation is an important research topic
that is widely used in 2-D and 3-D visualizations of patients’
internal structures, enhancing diagnostics and allowing detailed
preplanning of surgeries. Among the various medical image
segmentation methods, level set methods (LSMs), which are
based on the representation and evolution of curves or surfaces,
play an important role. They can handle cavities, concavities,
splitting/merging, and convolution [4]. A good discussion of
medical image segmentation algorithms, including LSM, can
be found in [5]. Malladi and Sethian [6] introduced the usage
of curvature, and the gradient of the image convolved with a
Gaussian as a potential field to guide the evolution of the level
set function. Our segmentation research is inspired by their
work; multiple initializations and a redefined speed function are
introduced into the level set propagation to handle the weak
boundaries in MR liver images.

So far, much research [7]–[16] has focused on liver segmen-
tation in Computed tomography (CT) images, but only a few
of them address MRI. The main reason is that abdominal MRIs
have more artifacts affected and a low gradient response, which
makes precise liver segmentation very challenging. The water-
shed transform was first applied to the image gradient magnitude
in [7], and the result is used as the initial curve in the following
level set segmentation methods, resulting in smooth and accu-
rate liver contours from CT images. Similarly, the authors in [8]
employed a topology-adaptive snake algorithm to segment liver
tissues from CT image slices, avoiding the leakage problem by
adding an inflationary force to the basic snake equation and ini-
tializing the snake inside the liver. Another study using the snake
method is listed in [9], where an improved gradient vector flow
(GVF) snake [10], [11] was proposed in order to produce an edge
map by a Canny edge detector, with final modifications using a
liver template and a concavity removal algorithm combined in
segmentation. The authors of [12] proposed a liver segmenta-
tion method that utilizes texture-based low-level features, with
the segmentation results compared against three different tex-
ture extraction methods: co-occurrence matrices, Gabor filters,
and Markov random fields [13]. Lim et al. [14] proposed an
approach based on the intensity distribution of multiple abdom-
inal CT samples, and then utilized a recursive morphological
filter with region-labeling and clustering to detect the liver’s
search range and generate the initial liver contour. Recently,
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statistics- and atlas-based segmentation methods were also in-
troduced. The authors of [15] proposed a two-step automatic
liver segmentation method. First they evolved a rough extracted
liver boundary based on MAP estimation from a probability at-
las of the liver, and then, precisely segmented the liver using an
LSM. Another atlas-based liver segmentation method for 3-D
CT images is introduced in [16], where a voxel-based segmen-
tation with probabilistic atlas is employed to obtain an initial
liver region for precise segmentation using a statistical shape
model. Heimann et al. [17] employed an active shape model
(ASM) to segment the liver region in CT scans, where a statistics
shape model was built from 32 samples using an optimization
approach based on the minimum description length representa-
tion. Regarding MRI segmentation, Sebastian and Gu [2] model
the liver perfusion problem using a registration method, where a
fast marching method (FMM) and an LSM [4]–[6] were used to
segment the liver region roughly from MRI slices, after which
a distance vector transform was employed to identify the per-
fusion position along the time sequence images. However, we
must note that the method can segment only a part of the liver
region and may lead to leakage and over-segmentation. An ac-
tive contour model [18], [19] was proposed in [3] to segment
the liver region and chamfer matching (CM) [20], [21] was ap-
plied to align the slices in an MRI series, with a prior liver
shape image required to help extract the liver shape and remove
artifacts and redundancy. Unfortunately, this prior shape must
be manually segmented in advance for every MRI series. An-
other improved LSM that aimed to solve the leakage problem is
presented in [22]. The authors defined the speed function from
a local homogeneity measurement instead of a gradient base,
but the process is slow and does not yield promising results
in some MRIs. This method is used in our experimental com-
parison for performance evaluations. From this brief literature
review, it is obvious that although some research addresses liver
segmentation in both CT and MR images, and some attempts
at automatic liver perfusion analysis were reported, only a few
provide promising outcomes automatically or at relatively low
cost.

In this paper, a four-step liver segmentation scheme is intro-
duced to efficiently track precise perfusion positions along the
time series of MRIs. The concept of multiple initializations is
combined with a convex hull (CH) algorithm to improve the
traditional LSM and prevent leakage and over-segmentation,
which can be easily extended to further initializations upon the
shape and topology of the region of interest (ROI), and can be
computed in parallel. Furthermore, a modified CM method is
introduced to better serve liver perfusion analysis by helping
radiologists automatically track the liver’s perfusion position
under respiration.

The remainder of this paper is organized as follows. In
Section II, after a quick review of the traditional LSM and
FMM, the CH and CM algorithms are introduced. The details
of the four-step multiple-initialization LSMs are presented in
Section III, and Section IV covers the automated liver perfusion
analysis. In Section V, the methods are validated and discussed
by presenting the results of multiple experiments, with conclu-
sions presented in Section VI.

II. ALGORITHM REVIEW

A. Level Set and Fast Marching Methods

In this section, we briefly review the LSM, its narrow-band
implementation, and the FMM. The LSM is a numerical tech-
nique that follows the evolution of interfaces. It represents the
interface as a level set of a higher dimensional function, such
as the signed distance to the interface, where the zero cross-
ings of the function values represent the original interface. The
evolution of the interface in the initial value problem can be
represented by the equation φt + F |∇φ| = 0, where φ is the
embedding function, φt is its time derivative, and F is the speed
function. There are many advantages to this formulation: one is
that φ remains a function as long as F is smooth, so it can han-
dle broken, merged, and changed topologies. Another advantage
is that geometric properties of the curve are easily determined
from a particular level set of the surface. One can observe that
the evolving curve is moved by updating the level set function
at a small set of points in the neighborhood of the zero level set.
By updating φ only in a narrow band around the curve, one can
reduce the computational complexity from O(N 3) to O(N 2).
This procedure is known as a narrow-band LSM [23].

As a predigest version of LSM, the FMM [4] can efficiently
solve curve and surface evolution problems. It calculates the
arrival time of a given point (x, y) on a closed curve that evolves
under a fixed-sign normal speed F (x, y). Because of the fixed-
sign speed, the evolving curve’s movement can only expand
or shrink, which makes FMM faster than LSM. The Eikonal
equation can be written as |∇T |F = 1, where T (x, y) is the
arrival time of point (x, y). The FMM explicitly constructs the
solution for all points in the computation domain, and is of
complexity O(N log(N)).

B. Convex Hull Algorithm

The CH problem [24] is one of the most fundamental prob-
lems in computational geometry: given a set S of n points in the
plane, find the convex hull of S:CH(S). We solved this prob-
lem using the well-known geometric sweeping algorithm called
“Graham scan” [25], with the complexity O(N log(N)). This
algorithm is employed in our multistep LSM to combine partial
liver regions efficiently, with more details given in Section III.

C. Chamfer Matching Match

The CM, first introduced by Barrow et al. [20], is a method
that matches edge points or other low-level feature points ex-
tracted from a 2-D image. There are two binary images involved
in the process. One is a source image in the form of a distance
map; another is a template image containing the object’s shape
contour. The template image performs a rigid transformation
to make its shape contour overlap with the boundary region in
the source image. An average value of the overlapped pixels in
the source image is the measure of the correspondence between
them, where a perfect match means that the average value is
close to zero. Transformations with different parameters are ap-
plied and the one with the minimum average is selected. Often
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Fig. 1. Flowchart of the proposed four-step multiple-initialization LSM ap-
proach, where the cost distribution is inspected and specified.

the rms average distance is used as the measure

rms =
((v2

1 + v2
2 + . . . + v2

N )/N)1/2

3
. (1)

Here, vi is the ith pixel of the source image that is within the
segmented liver region and N is the number of pixels.

III. MULTIPLE-STEP LEVEL SET SEGMENTATION METHOD

As shown in Fig. 1, the improved LSM consists of four steps.
First, multiple cycles are user-defined as the initial curves for the
FMM and LSM, although all the images in one series can share
the same set of initial cycles. Second, parallel propagations using
FMM and LSM based on these initial curves are implemented.
The third step involves a combination of the partial segmentation
results using a CH algorithm. The combined rough liver contour
is then used as the initial curve for the next step. The fourth step
is to smooth the primary liver contour using LSM, where a new
speed function is employed to create a nearly CH for the zero
level set. The total computation time is measured in seconds,
and exhibits higher cost in step 2 (65%) and step 4 (32%).

A. Multiple Initializations

In the improved LSM, multiple seeds that mark the initial
curves must be placed at different points of the ROI manually.
Specifically, if we consider the region roughly of a polygonal
shape, it is reasonable to set the initial seeds near the center of
each corner. The initial curves then evolve under the force of
FMM and LSM to partially trace the rough shape of the liver.
Level set zero crossings represent the original interface with a
signed distance function φ for a fixed point u0(x, y), which is

defined as

φ(x, y) =




|(xu0 , yu0 ) − (xp, yp)|, if u0(x, y) is not in
the interface

−|(xu0 , yu0 ) − (xp, yp)|, otherwise.
(2)

Here, P (x, y) is one of the nearest points from u0(x, y) on
the interface. We can obtain a series of signed distance functions
φ1

0 , φ
2
0 , . . . , φ

n
0 (where n is the number of cycles) that represent

the multiple initializations. Among the same MRI series, the
sequence can share the initializations. This claim is based on
the following observations: the movement of the liver is mostly
in vertical and the rotation can be ignored. The inner organ’s
rotation and deformation due to respiration is a very delicate
problem [26], and it needs a time-consuming rigid and nonrigid
registration algorithm to compensate for the respiration effect
[27]. After investigating the rotation problem, we decided to
ignore it. Our experiment result showed that the rotation effect
was always very limited. From prior experimentation, two or
three initialization cycles are enough to effectively cover the
whole liver in abdominal MRIs. If only one cycle is used, part
of the evolving curve may lead to leakage long before others
reach the desired boundary, which is the main drawback of
traditional LSMs. We shall demonstrate this in Section V.

B. Parallel Segmentation Using FMM and LSM

Once we have the initial curves, FFM and LSM are used to
evolve the curve. Here, we focus on the improvement of the
speed function, which defines the interface propagation speed
in the normal direction and the stopping criteria. The base speed
function depends on the gradient of image u0 [28], [29]. It is
defined as

Fbase(u0) =
1

1 + |∇Gσ (x, y) ∗ u0(x, y)|p , p ≥ 1 (3)

where∇Gσ (x, y) ∗ u0(x, y) is the convolution of u0 with Gaus-
sian filter

Gσ = σ−1/2e−(x2 +y 2 )/4σ . (4)

FMM is employed initially to quickly evolve the multiple
curves in parallel. The mean FMM iteration number is experi-
mentally set to 20 to prevent the over-segmentation, if any. After
Fbase becomes zero or the curve stops evolution at the last iter-
ation, we get a group of new distance functions: φ1 , φ2 , . . . , φn .
To fine-tune the curves, we switch to level set propagation,
where every φi is defined as

φi
t + F |∇φ| = 0. (5)

Here, φi
t is the ith evolving curve’s derivative over time t and F

is the new speed function, which is defined as

F (x, y, t) = α − κx,y ,t + Fbase(x, y). (6)

It includes a local curvature term κx,y ,t and a force term
Fbase(x, y), where the curvature controls the smoothness of
the evolving curve when the force term guides the curve to the
desired boundary. By updating each φi in a narrow band around
the curve, we can reduce the computational complexity from
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Fig. 2. Different speed images. (a) Traditional LSM’s speed image. (b) Jin
et al.’s [22] speed image. (c) Traditional LSM’s speed image added to Jin
et al.’s [22]. (d) Our opened speed image. The cycles are possible areas that will
lead to leakage.

O(N 3) to O(N 2), where the narrow-band size is experimen-
tally set to 6 to achieve a better result. In order to speed up
the algorithm even more, we can employ multithread program-
ming or a multicore CPU to make full use of the algorithm’s
parallelization ability.

We have mentioned that FMM and LSM are prone to leakage
and over-segmentation problems. This is mostly because of the
definition of the traditional speed function. The authors in [22]
proposed using local homogeneity measurements to produce the
speed function, but this is very time-consuming. Our solution is
to apply an open operation to the traditional speed image. The
open operation on image A using a 3 × 3 cross shape structuring
element B is denoted by

A ◦ B : A ◦ B = (A � B) ⊕ B (7)

where ⊕ and � denote morphological dilation and erosion oper-
ations, respectively. After the open operation, most of the noise
in the speed image is removed, so the level set’s evolving curve
will stop at the proper position instead of evolving the noise.
This not only limits the risk of leakage in each parallel seg-
mentation step, but also produces a high probability that the
segmentation may not cover the entire shape. The CH algorithm
can help to solve this problem in the following step. Fig. 2
shows an example of the four different speed images, where in
Fig. 2(c), the speed function of the traditional LSM is added to
Jin et al.’s [22] speed function. It adds the low-intensity part of
the traditional level set speed image to Jin et al.’s [22] in order
to reduce the noises.

Fig. 3. Example of the liver segmentation using two initial curves. (a) Left
segmented result. (b) Right segmented result. (c) Before CH. (d) Highlighted
CH liver region before erosion operation. (e) Highlighted CH liver region after
erosion operation. (f) Level set smoothed result.

C. Combine Partial Segmentation using CH

So far, we have obtained n segmented partial liver regions,
which must be combined into the seed of the next level set
smoothing step. The CH [24], [25] algorithm is employed to
solve this combination by using the geometric sweeping algo-
rithm known as the “Graham scan.” First, the edge points of
each partial curve are used as the input to the CH algorithm,
which consists of first detecting extreme points as pivots, then
sorting the points in order of increasing angle about the pivot,
and finally hull building. Thereafter, the combined contour is
shrunken twice by morphological erosion using a 3 × 3 cross
shape structuring element to keep it stable and leak-free in the
next level set smoothing step. Finally, the partial segmentation
results are incorporated into the result to compensate for lost
pixels during the shrinkage process. The obtained partial liver
boundary from the previous steps remains nearly unchanged af-
ter the CH algorithm, while the new parts of boundary induced
by CH will be refined by the next step to fit the real boundary.
An example of the procedure is shown in Fig. 3.

D. Level Set Smoothing Step

The final step is to refine the liver segmentation by smoothing
the primary CH result to get a better liver contour. Here the
speed image is the original one without open operation, and
the definition of F (x, y, t) is simplified, with only the curvature
term to prevent leakage:

Fhull(x, y, t) =
{−1.5κx,y ,t , if κx,y ,t < 0

−0.1κx,y ,t , if κx,y ,t ≥ 0.
(8)

The speed function Fhull(x, y, t), which forces curves to
move along the normal direction, is calculated by the local
curvature κx,y ,t . If κx,y ,t is negative, the local shape is con-
cave; otherwise, the local shape is convex. The parameters of
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the speed function Fhull(x, y, t) are defined by experiment, and
the improved speed function can create a nearly CH of the zero
level set in order to make the segmentation result smooth and
leak-free. By making sure that the total number of pixels in the
segmented region does not exceed a certain threshold, we can
determine the stopping criteria of the level sets. This step is far
less costly than step 2 because the contour is closer to the true
liver boundary.

IV. AUTOMATIC LIVER PERFUSION ANALYSIS

A modified CM algorithm is applied to the segmented liver
regions to realize automatic liver perfusion analysis. In CM, the
two input images are asymmetric. The source image is a distance
map formed by assigning to each pixel the distance to the nearest
edge pixel when the template image is a binary image containing
the shape of the ROI. In our application, the level set evolving
result is naturally a distance map and the template image is
predefined where the perfusion position is marked manually. In
other words, any slice of the same MR series can be selected as
a template image. For example, we can select the segmentation
result from the first slice as the template image, with its perfusion
position defined by a radiologist. Because of the low quality
of the MRI series, it is always difficult to fit a moving curve
exactly to the liver boundary, and two modifications are applied
here to guarantee precise outcomes. First, the noise component
of the distance map, which remains in the same position across
the image series, can be eliminated from the template image
to protect the rms average. Second, the maximized number of
hit edge pixels is introduced. After rigid transformation, when
the template image is aligned with the source image, if the
corresponding pixel in the source image is close to zero, our
analysis indicates that the pixel lies on the boundary of the liver.
The more of these so-called hit edge pixels there are, the better
the two images are matched. Thus, letting vi be the ith hit edge
pixel for i = 1, 2, . . . , N , we can find the maximum of following
formula with respect to different rigid transformations:

F (N, vi) =
N

((v2
1 + v2

2 + · · · + v2
N )/N)1/2/3

. (9)

We apply the X- and Y -axes’ relative transformations dxi

and dyi of the ith image to the perfusion positions x0 and y0
in template image, and (xi, yi), which is the position in the ith
image, can be calculated by{

xi = x0 + dxi

yi = y0 + dyi.
(10)

The liver perfusion curve, obtained through a so-called dual-
input single-compartment model [30], enables generation of
series hepatic hemodynamic indexes such as hepatic blood flow
(HBF), hepatic blood volume (HBV), hepatic arterial perfusion
(HAP), portal vein perfusion (PVP), hepatic perfusion index
(HPI), and mean transit time (MTT). These indexes give an in-
tegrated evaluation of the current condition of the liver and can
characterize suspicious pathological changes. After multiple-
initialization LSM segmentation and the CM, all the liver per-
fusion positions across the whole abdominal MRI series can be

Fig. 4. Example of the liver segmentation using three initial curves. (a) First
segmented result. (b) Second segmented result. (c) Third segmented result.
(d) Total segmentation. (e) CH result. (f) Final segmentation result.

precisely located from the improved liver region, and the perfu-
sion curve is thus depicted by recording the intensity variations.

V. EXPERIMENTAL RESULTS

We have implemented our improved multiple-initialization
and multiple-step level set segmentation methods in C program-
ming language and applied it to segment liver regions from ab-
dominal MRIs, where the band size of the narrow-band LSM
is 6. In order to evaluate our proposed algorithm, 12 perfu-
sion series of 2-D abdominal MRIs with size of 256 × 256 are
employed, and each dataset contains nearly 60 time sequenced
slices. The datasets were scanned by a GE Medical Systems
Genesis Sigma system at Shanghai Renji Hospital. They show
the patients’ abdomen in coronal view with relevant parame-
ters: slice thickness 15.0; repetition time 4.7; echo time 1.2;
magnetic field strength 15 000; and flip angle 60◦. The experi-
ments were performed on a PC with a Pentium-D 2700 MHz,
1-GB RAM. We also tested that our algorithm worked well with
axial and sagittal images, which are of the same importance in
clinics. The reason to present in coronal view is just because of
the liver contours; however, in coronal images, it is considered
more challenging as it is more likely to be misled by peripheral
organs or other tissues, such as the heart, colon, small intestine,
or diaphragm.

A. Segmentation of Liver From MRIs

Figs. 3 and 4 show the process examples of the improved LSM
in segmenting the liver from MRIs, which employ two and three
initial curves, respectively, in different MRI series. However,
the numbers of initializations do not need to change in the same
series. The number of initial circles is determined depending
on the shape of the target region (the liver). Specifically, if we
consider the region roughly as a polygonal shape, the number of
edges is the maximal number of initial circles. It is suggested to
locate the initial circles near the center of each angular corner.
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Different segmenting stages using three initial circular curves
are shown in Fig. 4, where the traditional LSM can hardly suc-
ceed due to the heavy artifacts and the unclear liver boundary.
Here, our final segmented liver contour in Fig. 4(f) achieved
reasonable details, and contains the vena cava and portal vein
in the bottom of the liver. We keep the vessel regions for two
reasons. First, the liver shape with these vessel regions appears
smoother, which improves the accuracy of the CM to obtain
a more precise perfusion position. Also, as 30% of a normal
human liver’s blood supply comes from the hepatic artery and
70% from the portal vein, the intensity of these vessels is es-
sential for determining dynamic changes in the liver intensity,
and they are significant in calculating perfusion indexes in our
future research. Furthermore, the existence of these vessels is
accepted by clinicians and will not influence the diagnosis.

Another example shown in Fig. 5 is used to compare our im-
proved LSM to others in the literature, where traditional LSM,
Chen and Gu’s [3] active contours, and Jin et al.’s [22] LSM
are used. We performed an extensive comparative study to show
that the four-step approach of our multiple initializations is nec-
essary. The first row in Fig. 5 shows that if the initialization
curve of the traditional LSM is located at the left of the liver, it
can only segment part of the liver. Adding more iteration steps
would simply lead to leakage and over-segmentation. The same
problems occur if the initialization curve is located at the right
or in the middle of the liver, which are shown in the second
row and the third row of Fig. 5. However, if we combine the
first three rows of segmentation results before they get over-
segmented, we can obtain a perfect segmentation. The fourth
row in Fig. 5 shows that Jin et al.’s [22] algorithm cannot cover
the whole liver and it is more costly (Table I). Although the
result in the fifth row looks accurate, a prior liver shape must
be first defined manually. The sixth row presents the proposed
approach, in which most of the liver is segmented, except for
slight under-segmentation in the lower left and lower right cor-
ners. This limitation arises because there is always a stronger
gradient response in the upper half of the abdominal MRI se-
ries than in the lower half, so the evolving curve stops when it
reaches the upper half liver boundary despite the fact that the
lower half of the liver boundary has not been reached.

We also measured accuracy among these segmentation meth-
ods. The area-based measures [31], [32] are used to compare
the regions enclosed by the segmentation boundary to an expert-
defined gold standard. Let VS and VT represent the regions en-
closed by the segmented boundary and the “true” boundary,
respectively, and the true positive region (TP) as the region
enclosed by both boundaries of VTP = VS ∩ VT . In addition,
the false positive (FP) and false negative (FN) are defined as
VFP = VS − VT and VFN = VT − VS , respectively [33]. The
false fraction (FF) is one minus the fraction of falsely segmented
regions. Thus, accuracy metrics can be defined as follows:

TPF (true positive fraction) =
VTP

VT
(11)

FPF (false positive fraction) = 1 − VFN

VT
(12)

FF (false fraction) = 1 − VFP + VFN

VT
. (13)

It is obvious that larger values of TPF, FPF, and FF correspond
to higher segmentation accuracy. Fig. 6 shows the difference
between the gold standard and the results from other four meth-
ods. The computing time and the accuracy analysis are listed
in Table I, with the values averaged through all 60 time series
images of the first dataset shown in Fig. 3. It reveals that out
of the four candidates, both Chen and Gu’s [3] active contours
and the proposed approach achieved better segmentation results.
However, the active contours approach requires previously man-
ually defining a shape, whereas the proposed method needs only
two initial seeds for an MRI series. Furthermore, the proposed
method has the same order of magnitude for computation time
as the traditional LSM, which achieves the fastest segmentation
among all the candidates. The mean computing time for each
slice of all the 12 MRI series is 8.56 s with standard devia-
tion of 2.80. The comparison reveals that the improved multiple
initialized LSM can better automate the segmentation of MRI
liver regions while keeping the computing time fast enough for
interactive segmentation. The overall accuracy analysis of all
the 12 MRI series is shown in Fig. 7, where the mean TPF is
0.932 with standard deviation of 0.053, the mean FPF is 0.941
with standard deviation of 0.042, and the mean FF is 0.940 with
standard deviation of 0.029. The seventh dataset shows lower
accuracy due to the worse image quality.

B. Liver Perfusion Analysis

The performance of the automated liver perfusion analysis is
tested against traditional techniques. An example is shown in
Fig. 8. Compared to the traditional method (thin zigzag lines,
fixed perfusion location), the proposed algorithm can track the
movement of perfusion position across the whole series, provid-
ing a more accurate perfusion curve (thick smooth curve), with
a Gaussian filter applied to get a smoothed perfusion curve. This
filtering is acceptable because radiologists usually pay more at-
tention to the trend rather than the exact value of each point in
the curve. For example, a malignant tumor will present an early
rapid ascending style because of the increasing blood supply by
hepatic arteries, which helps in effective differential diagnosis.
The error elimination provided by the Gaussian filter is properly
handled in order not to affect the final result too much, an ap-
proach validated by radiologists from Shanghai Renji Hospital.
To further investigate the accuracy of the proposed approach,
the automated perfusion analysis result is verified by an expert-
rectified result.

C. Summary

The proposed multiple-initialization LSMs can better seg-
ment regions with convex shape. Liver segmentation experi-
ments from low-contrast abdominal MRIs show that the im-
proved method is more accurate than the traditional LSM, and
is much faster than others mentioned in Fig. 6.

The improved LSM is better poised to deal with low-contrast
images than the traditional LSM because of its multiple initial-
izations. The liver region is divided into two or three parts that
are propagated independently to avoid sinking into local max-
ima and leakages. In comparison, due to the artifacts and low
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Fig. 5. Comparison among different liver segmentation methods from MRIs. (a) Traditional LSM, segmentation starting from the left. (b) Traditional LSM,
segmentation starting from the middle. (c) Traditional LSM, segmentation starting from the right. (d) Jin et al.’s [22] LSM. (e) Chen and Gu’s [3] active contours
method; from left to right are edge pixels, the active contour’s result, complete liver contours by connecting edge pixels, and the final result. (f) Our improved
multiple LSM; from left to right are the left partial and right partial segmentation results, CH result, as well as the final segmentation result.
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TABLE I
MEAN COMPUTING TIME AND ACCURACY ANALYSIS

Fig. 6. Difference between the gold standard and each of the four algorithm results. (a) Traditional LSM. (b) Jin et al.’s [22] LSM. (c) Chen and Gu’s [3] active
contours. (d) Our improved multiple-initialization LSM result. White lines indicate the expert-defined gold standard.

Fig. 7. Mean segmentation accuracy of the 12 datasets. The mean TPF is
0.932 with standard deviation of 0.053, the mean FPF is 0.941 with standard
deviation of 0.042, and the mean FF is 0.940 with standard deviation of 0.029.
The seventh dataset shows lower accuracy due to the worse image quality.

gradient of the liver boundary in MRIs, the traditional LSM,
which starts from only one seed, easily results in leakage prob-
lems before the other parts of evolving curve reach the bound-
ary. The separate regions from the multiple initializations can be
combined by using the CH algorithm, and another global level
set smoothing is applied to the CH result to further evolve the
curve to the true boundary without taking risk. The improved
LSM can be easily extended to more initializations according to
the shape and topology of the ROI and the image quality. Fur-
thermore, this framework has great potential for parallel com-
puting to accelerate the heavy processing especially involved in
3-D image analysis.

Fig. 8. Liver perfusion intensity curve. Points labeled by “x” are obtained by
the proposed method, where they are normalized by Gaussian filter to the red
curve. It is compared to the result of the original method using a fixed position
across the whole series shown in blue lines.

The main drawback of the multiple-initialization LSM
method is the difficulty in automatically determining the number
of initializations. Meanwhile, the under-segmentation problem
still exists on lower sharp corner regions due to the low-gradient
definition of the lower half of the liver region in the abdominal
MRIs.

From the experimental results, we find that the complexity
of multiple-initialization LSM is of the same order of magni-
tude as those of the traditional LSM. Although more steps are
introduced into our multiple-step approach, as described in Sec-
tion III, the improved LSMs do not introduce much more extra
effort than the traditional LSM as well as benefit from parallel
implementation in the second step. Both our improved LSM
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and Jin et al.’s [22] improved LSM aim at solving the leakage
problem, but our multiple-initialization LSM is much faster.

The multiple-initialization LSM can cover more liver regions
before leakage and over-segmentation occur than does tradition
LSM, especially when dealing with abdominal MRIs with heavy
artifacts and weak boundaries. From Table I, we can find that it
is more accurate than Jin et al.’s [22] LSM, and is comparable
in accuracy to Chen and Gu’s [3] active contours segmentation
result.

The multiple-initialization LSM requires less user interaction,
except during the definitions of the initialization cycles and the
perfusion position. By comparison, the higher accuracy of liver
segmentation in Chen and Gu’s [3] method is dependent on
more manual definitions to construct a complete liver template
for each datasets.

VI. CONCLUSION

In this paper, a novel multiple-initialization LSM approach is
proposed to overcome the leakage and over-segmentation prob-
lems in segmenting the liver region from MRIs. An automated
liver perfusion analysis method is also proposed to automati-
cally conclude liver perfusion curves and compensate for patient
respiration. The segmentation method has been tested on 12 se-
ries of 2-D abdominal MRIs, where the results reveal that the
proposed method has the potential to segment the liver region
quickly and accurately even from images with more artifacts and
lower gradient responses on the boundaries. The accuracy of the
proposed method is significantly improved from one of the tra-
ditional LSMs. The relationship between leakage and level set’s
speed function was also examined. The comparisons against the
traditional LSM, Chen and Gu’s [3] active contour method, and
Jin et al.’s [22] method show that the improved approach yields
better performance even with limited user interaction.

Relying on the stability of the shape of the liver, modified CM
can be used to automatically locate relative perfusion positions
across abdominal MRIs, as verified in the experiment. A refined
liver perfusion curve without respiration effects can thus be
obtained.

In the future, we plan to estimate the optimal number of
initializations by texture analysis, work even harder to further
improve segmentation accuracy without user interaction, solve
the slight under-segmentation for other potential applications
like volumetry or morphometry, the segmentation approach to
other organs, and extend it to 3-D volume data.
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