
  

 
Figure 1.  Flow chart for our aortic valve segmentation algorithm 

 

Abstract— Geometric features of aortic valve can be applied 

in diagnostic, modeling and image-guided cardiac intervention, 

however methods to accurately and effectively delineate aortic 

valve from ultrasound (US) image are not well addressed. This 

paper proposes a novel aortic valve segmentation algorithm for 

intra-operative 2D short-axis US image using probability 

estimation and continuous max-flow (CMF) approach. The 

algorithm first calculates composite probability estimation 

(CPE) and single probability estimation (SPE) over 5 prior 

images based on both intensity and distance to the corresponding 

centroid, then the energy function for the current input image is 

constructed, followed by a Graphic Processing Unit (GPU) 

accelerated CMF approach to achieve aortic valve contours in 

approximately real time. Quantitative evaluations over 270 

images acquired from 3 subjects indicated the results of the 

algorithm had good correlation with the manual segmentation 

results (ground truth) by an expert. The Average Symmetric 

Contour Distance (ASCD), Dice Metric (DM), and Reliability 

were employed to evaluate our algorithm, and the evaluation 

results of these three metrics were 1.79±0.46 (in pixels), 

0.96±0.01 and 0.84 (d=0.95) respectively, where the 

computational time was 39.23±5.02 ms per frame. 

I. INTRODUCTION 

The aortic valve is an important cardiac structure 
including three leaflets, the geometric features of which are 
very valuable in many applications, such as clinical 
diagnostics, modeling applications and image-guided cardiac 
interventions and therapy, especially in Transcatheter Aortic 
Valve Implantation (TAVI) [1]. As a routine cardiac imaging 
modality in clinic, the ultrasound (US) has  ability of capturing 
fast moving valve structures [2]. It is commonly used to 
visualize intra-operative aortic valve in TAVI [3, 4]. In order 
to provide accurate image-guidance for TAVI, several works 
have been done on the registration between intra-operative US 
image and a model derived from pre-operative computed 
tomography (CT), in which the segmentation of aortic valve 
from US image is one of the challenging steps, due to the 
following degradation factors [5, 6]: 
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1) Leaflet motion: the leaflets of the aortic valve have a 
relatively intense change of position and shape during the 
valve opens and closes in a cardiac cycle. 

2) Artifacts: the heavy calcification of the leaflets causes large 
shadowing artifacts. It’s hard to detect artifacts previously 
to guarantee they won’t interfere with postoperative 
processing. 

3) Speckle noise: speckle noise, which is inherent to US 
image, is the major difficulty when processing and 
analyzing US image. 

4) Acquisition on polar coordinates: image data are collected 
on polar coordinates, which leads to a nonuniform 
inter-sampling space. 
Manual segmentation by experts of US image is 

prohibitively time consuming and tedious, which have forced 
implementation of semi-automatic or automatic algorithms. 
The literature allocated to methods for echocardiography 
segmentation is extensive. Yan et al. [7] applied level set 
method to detect echocardial boundary using an improved fast 
marching method reducing the influence of noise, which has 
qualitative results and lacks of quantitative evaluation. Qian et 
al. [8] introduced a segmentation method for rat cardiac US 
images of short-axis view containing large dropout regions. 
They originally proposed tunneling descent for active contour 
evolution that can overcome spurious local minima using an 
explicit stopping rule. Carneiro et al. [9] proposed a 
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segmentation method for left ventricle of US based on deep 
neural network and efficient searching algorithms. Their 
algorithm is robust to imaging conditions and simplifies the 
complicated search process of pattern recognition. However it 
requires a large set of training images. Schneider et al. [2] 
designed a mitral annulus segmentation algorithm using graph 
cut, and the only input of this algorithm is the user-specified 
point which makes it operator-independent, but it just takes 
closed mitral valve into consideration. 

Automatic method to delineate the aortic valve of 
transesophageal echo was presented in [5], where the aortic 
valve of short-axis view is segmented based on continuous 
max-flow (CMF) approach [10], which constructs energy 
function using prior information (image gradient, probability 
estimation, etc.) coming from the first three images in one 
cardiac cycle. The position and shape of aortic valve vary in a 
large range during a cardiac cycle resulting from its open and 
close. However, the first three images only represent part of 
aortic valve variation during the whole cardiac cycle, which 
makes the segmentation accuracy compromised. In addition, 
only composite probability estimation (CPE) is constructed 
using the first three images. 

Inspired by the previous work in [5], this paper proposes a 
segmentation algorithm taking more prior US images evenly 
spanning a cardiac cycle into account and constructing both 
CPE and single probability estimation (SPE). This algorithm 
first gets CPE and SPE over the 5 prior images based on both 
intensity and distance to the corresponding centroid, then 
constructs energy function for the current input image, 
followed by a Graphic Processing Unit (GPU) [11] 
accelerated CMF approach to obtain segmentation results. 

The outline of the paper is shown as below. Section II 
describes the details of the algorithm, as shown is Fig. 1. 
Section III presents three  experiments of the algorithm, then 
followed by the conclusion in Section IV. 

II. METHODLOGY 

A. Continuous max-flow image segmentation 

The aortic valve segmentation algorithm extensively 
makes use of CMF approach [10], in which the image 
segmentation with two regions can be described as a 
minimization problem of an energy function [12]: 
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where ]1,0[)( x  is a labeling function which labels 

image pixel x  as foreground or background, )(xCs  and 

)(xCt  are regional properties that can be interpreted as 

penalties to assign a pixel as foreground and background 

based on image properties respectively, )(xC p  is boundary 

property which represents a penalty for a discontinuity 

between two pixels, and )(x  is the total variation of the 

labeling function. 

Compared with classic graph-cut based methods [13, 14], 
CMF algorithm can improve the segmentation accuracy with 

its ability of avoiding grid bias, and can be implemented and 
parallelized by graphics card. 

B. Probability Estimation 

Segmentation of US images primarily relies on image 
gradients or differences in intensity distributions between the 
foreground and background [2, 15, 16]. However, owing to 
the rapid motion of aortic valve leaflets and the low quality of 
US image, it is hard to utilize the information about gradients 
and differences in intensity distributions. Considering that low 
intensity pixels near the centroid of prior segmentation are 
more likely to be foreground (pixels corresponding to the  
leaflets), while high intensity pixels far from the centroid are 
more likely to be labeled as background, intensity and 
distance to the corresponding centroid are both used to 
construct probability estimation function. Compared with 
Pencilla et al. [5], this paper takes more prior US images 
evenly spanning a cardiac cycle into account and constructs 
not only CPE but also SPE, which contains prior probability 
distribution information of the prior image best matching the 
current input image.  

We select 5 prior images evenly spanning a cardiac cycle 
with aortic valve manually segmented by an expert. Based on 
the segmentation of the 5 prior images, CPE is generated by 
calculating the conditional probability [3] of a pixel identified 
as foreground based on intensity and distance to the centroid 
(Fig. 2(a)), which is the geometry mean of segmented regions 
in all the prior images, as shown in Equation (2):  
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where )( iFP is the probability of a pixel belonging to the 

foreground, ),( IRP is the probability of a pixel, whose 

distance to centroid is R  and intensity is I , belonging to the 
foreground, and n  is the number of prior images (In this 

study, n was set to 5). 

Besides CPE, SPE is calculated for each prior image (Fig. 
2(b)), which uses the true centroid of each prior image by 
Equation (3):  
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where )(xPi  is the probability function of i -th prior image 

( i =1, 2, 3, 4, 5). 

In addition, for each prior image i  , its typical foreground 
i

FI  and background intensity 
i

BI , which can represent 

corresponding foreground and background intensities, are 
calculated respectively using Equation (4) and (5): 
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where F  and B  respectively represent the foreground 

region and the background region, 
F

IP and 
B

IP  are 

respectively the probability of intensity I  in foreground and 

background region, and )( pI  is the intensity of pixel p .  

In this study, 5 groups of 
i

FI  and 
i

BI  are acquired. 
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(a)                                                        (b) 

Figure 2. Probability estimation. (a) Composite probability estimation;  

(b) Single probability estimation. 

   
(a)                                                       (b) 

Figure 3. (a) the current input image; (b) the probability map of the 

current input image. 

    
 

    
 

     
Figure 4. Segmentation results showing four points in the cardiac cycle for one human (first row) and two swine (second row and  third row). Green line 

depicts  ground truth. Red line represents the contour extracted by the algorithm. First row from frames 32, 35, 42 and 55; Second row from frames 76, 80, 

83 and 87; Third row from 1, 9, 11 and 18. 

C. Energy Function Construction 

The probability map of current input image is first 
acquired using CPE, as shown in Fig. 3, followed by Otsu 
algorithm to get an optimal threshold. Then pixels with the 
intensity below the threshold are removed, and the remainder 

comprise a target region A  with a centroid C . Afterwards, a 

similarity metric (SM) is calculated to find out the prior image 
best matching the current input US image, as defined in 
Equation (6): 

2 2( ) ( )   (6)i i

i p p p p

p A

SM D D I I


     

where pD  is the distance from pixel p  in A to C , and 
i

pD  

is the distance from corresponding pixel p  of prior image i  

to its own centroid, pI  is the intensity of p , and 
i

pI  is the 

intensity of p   in prior image i .  

Then, the probability map of current input image is 

updated by SPE of the best matching prior image MPI , and 

FI  and BI  of MPI  are used to construct the energy 

function for the current input image of short-axis view by 

Equations (7)-(9): 

( )   (7)s x FC x I I   

( )   (8)t x BC x I I   

( ) 0.5        (9)pC x   

where x  is the position of a pixel, )(xCs and )(xCt  are the 

regional items respectively representing the foreground and 

background, )(xC p is the boundary item, and FI and BI  are 

the corresponding typical foreground and background 

intensity of the prior image MPI . 

Afterwards, GPU accelerated CMF approach is employed 
to get an initial segmentation result. The final result is 
obtained after the initial result is multiplied by the updated 
probability map. 

III. EXPERIMENTS  

To evaluate the proposed algorithm, 3 subjects each with 
90 short-axis cardiac US sequences were used and a total of 
270 images (640*480) were segmented. The image data were 
acquired from Ruijin Hospital with a GE Vivid 7 US 
machine( GE M3S 1.5 MHz Matrix Phased Array Adult 
Cardiac Probe), and we performed our experiments under 
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Table 1. ASCD, DM, Reliability of the algorithm (in pixels), and 

processing  time per frame; ASCD and DM are expressed as mean ± 

standard deviation. 

Items ASCD DM 
Reliability 

(d = 0.95) 

Time per 

frame (ms) 

Our 

method 
1.79±0.46 0.96±0.01 0.84 39.23±5.02 

 

 
Figure 5. Example of variation of ASCD as a function of the time step 

Windows XP on an Intel Core i7 computer with NVIDIA 
GeForce GTX 560 graphics card with 1 GB display memory 
and 256 bit data width. For evaluation purpose, the automatic 
segmentation results were compared with the corresponding 
ground truth. Fig. 4 shows  the segmentation results. 

To obtain quantitative performance assessment of the 
proposed method, a scoring system consisting of three error 
measures including Average Symmetric Contour Distance 
(ASCD), Dice Metric (DM) and Reliability of the algorithm 
was employed [17, 18]. 

Low ASCD with high DM means high similarity between 
the automatic segmentation result and the ground truth, 
indicating that the automatic segmentation result has good 
correlation with manual segmentation result by the 

expert. )(dR  measures the reliability of the algorithm. The 

overall performance of the algorithm is summarized in Table 
1. Fig. 5 and Fig. 6 respectively depict the ASCD and DM as a 
function of time, i.e., throughout the cardiac cycle. Fig. 7 

depicts R  as a function of d . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

This paper investigated a robust algorithm detecting the 

aortic valve in cardiac US sequences of the short-axis view in 

approximately real time. The solution is obtained using 

probability estimation and GPU accelerated CMF approach. 

Corresponding evaluations over 270 images acquired from 3 

subjects demonstrated that the segmentation results correlate 

well with manual segmentation results by the expert. 

Compared with Pencilla et al. [5], the proposed method 

improves accuracy and reduces computational time. In the 

future, our research will focus on the segmentation of long 

axis aortic root structure. 
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Figure 7. Reliability for the proposed algorithm. 

 
Figure 6. Example of variation of DM as a function of the time step 
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