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ABSTRACT 

 

Accurately delineating the myocardium from cardiac T2 and 

delayed enhanced (DE) MRI is a prerequisite to identifying 

and quantifying the edema and infarcts. The automatic 

delineation is however challenging due to the heterogeneous 

intensity distribution of the myocardium. In this paper, we 

propose a fully automatic method, which combines the 

complementary information from the two sequences using 

the newly proposed Multi-Component Bivariate Gaussian 

(MCBG) mixture model. The expectation maximization 

(EM) framework is adopted to estimate the segmentation 

and model parameters, where a probabilistic atlas is also 

used. This method performs the segmentation on the two 

MRI sequences simultaneously, and hence improves the 

robustness and accuracy. The results on six clinical cases 

showed that the proposed method significantly improved the 

performance compared to the atlas-based methods: myocar-

dium Dice scores 0.643±0.084 versus 0.576±0.103 (P=0.002) 

on DE MRI, and 0.623±0.129 versus 0.484±0.106 (P=0.002) 

on T2 MRI.  

 

Index Terms—multi-component bivariate Gaussian mix-

ture model, expectation maximization, probabilistic atlas, 

myocardial infarction, Magnetic Resonance Imaging 

 

1. INTRODUCTION 

 

Assessing variability of the myocardium is essential in 

diagnosis and treatment management for patients suffered 

from myocardial infarction [1-4]. Cardiac MRI sequences 

are widely used in clinics, in particular the Delayed En-

hanced (DE) sequence, which can visualize the infarcts, and 

the T2-weight MRI, which provides the information of the 

ischemic regions[1, 2]. To localize and quantify the edema 

and infarct regions, segmenting the myocardium from the 

T2 and DE MRI is a prerequisite.  

However, the automatic segmentation of the myocardi-

um is challenging due to the intensity heterogeneity, as Fig. 

1 illustrates.  

Firstly, the intensity range of the myocardium is over-

lapped with that of the blood pools, particularly in the DE 

MRI due to the contrast enhancement to the infarct regions. 

Hence, the boundary between the infarcts and blood pools is 

generally indistinct and particularly difficult to delineate.   

 Secondly, the intensity of the myocardium is not nor-

mally distributed in either the T2 or DE sequence. Instead, 

the intensity distribution is a mixture of at least two compo-

nents: one for the healthy tissues and the other for the is-

chemic regions (infarcts in DE MRI, edema in T2 MRI). 

This challenges the traditional EM-based frameworks [5] 

and the atlas-based segmentation methods[6], where uni-

formity of the intensity distribution is commonly assumed.  

To deal with the challenges, in this work we propose to 

combine the complementary information of the two cardiac 

MRI sequences and perform the segmentation simultaneous-

     
(a)                                     (b)                                   (c)  

   
(d)                                                         (e) 

Fig.1. Cardiac MRI images and the intensity distribution:  a 

T2 image (a) and the intensity distributions (d); a DE image 

(b) and the intensity distribution (e); (c) provides the classi-

fication results of the myocardium.   

 



ly within a unified framework. This is inspired by the previ-

ous work [3] that the missing information, such as bounda-

ries, in the DE MRI can be complemented form the T2 MRI, 

and vise versa. In the proposed method, the two MRI se-

quences are assumed to be pre-registered, and the intensity 

distribution of the two registered images is then formulated 

by a Multi-Component Bivariate Gaussian (MCBG) mixture 

model. The segmentation and model parameters are estimat-

ed by using the Expectation Maximization (EM) algorithm. 

Finally, the segmentation result of the proposed method also 

has potential to classify the regions of edema and infarcts in 

the T2 and DE sequences respectively, as the Fig 1 (c) 

shows.  

The rest of this paper is organized as follows: the pro-

posed method is described in Section 2; the experiments and 

results are presented in Section 3; conclusions and discus-

sions are given in Section 4. 

 

2. METHOD 

 

This work intended to classify image voxels from pre-

registered T2 and DE sequences jointly into spatially coher-

ent classes, myo LV RV b, ,{ },L L L L  , namely, myocardium, 

left ventricle (LV), right ventricle (RV) and background. 

First, the prior class probabilities for an image voxel were 

determined by propagating probabilistic atlases constructed 

from healthy subjects using image registration [5]. Second, 

image intensity values from both registered images were 

jointly modeled by a bivariate random vector. Moreover, to 

account for within class intensity heterogeneities, a multi-

component Gaussian mixture (MCGM) model was proposed. 

The segmentation and model parameters were estimated by 

maximizing the log-likelihood using the Expectation Maxi-

mization (EM) algorithm [7]. 

 

2.1. Multi-Component Bivariate Gaussian (MCBG) mix-

ture model  

 

In this study, we assumed, for each class of interest, the joint 

intensity distribution from T2 and DE sequences followed a 

multi-component bivariate Gaussian mixture. For observed 

intensity pair, 2 ,( )DE
i i i

Ty y y , 1,...,i N , where N is the 

total number of voxels, the MCBG can be written as, 
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where Ln  is the total number of components for class L. 

jiL is the mixture proportion of the jth component of class 

L, and 
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assumed to follow a Markov Random Field with parameter 
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2.2. The maximum likelihood and EM framework 

 

EM algorithm finds the maximum likelihood estimation of 

MCBG parameters. The segmentation can be found by 

estimation of the posterior probability of hidden variables 

iz , given observed intensity pair iy , and model parameters 

for all image voxels. 

 

2.2.1 Initialization 

Our EM algorithm was initialized according to the propa-

gated probabilistic atlases ( )Atlas
LP i . Let iL  be a function 

of propagated probabilistic atlas, which assigned a prior 

probability for ith voxel of class L. Here, we have chosen, 

( ( ))Atlas
iL L

wP i   subject to the constraint, 1iLL



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where w  is a weighting factor determined experimentally. 

The parameters were initialized as follows: for the jth 

component of class L, 
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(1) mean parameter, 
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2.2.2 Update equation 

Starting from a proper initial parameter values, EM inter-

leaves two steps. E-step finds the conditional expectation of 

log likelihood of complete data, given the observed intensity 

and current estimates of parameters. During E-step, posteri-

or probability ip  is calculated. In M-step, 
jLμ and 

jLΣ are 

updated by maximizing the conditional expectation. 

E-step: 
( )

j

t
iLp  is updated as given in (2) 
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Due to the interaction effects between voxels in the MRF, 

approximate techniques were used in calculating 
jiL  [7], 

as given in  (3).  We added iL as a constraint here and the 

formula used to update 
jiL  is: 
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The update of G is not trivial and we refer the interested 

reader to [7] for detail. 

Upon convergence, the posterior probability for ith 

voxel of class L is finally given by, 
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Results from the EM algorithm were generally not 

smooth and the myocardium segmentation could contain 

parts of the papillary muscle. We therefore computed the 

convex hull of the blood pool in each slice to cover the 

papillary muscle and removed higher harmonic phases of 

the epicardial contour to generate the final smooth segmen-

tation [8]. 

 

3. RESULTS 

 

We acquired the T2 and DE sequences from six patients 

after myocardial infarction. The voxel sizes of the T2 and 

DE sequences were respectively                  mm 

and                 mm. The DE images were regis-

tered and resampled, with the same resolution, to the corre-

sponding T2 images. Each slice was manually segmented by 

a clinician using the ITK-SNAP [9].   

 For comparisons, the two MRI sequences were first 

segmented using the traditional atlas and registration-based 

segmentation method, where an atlas constructed from the 

mean of a set of cardiac MRI was used[6]. This method also 

combined the information of the two sequences for the 

registration in the atlas propagation procedure[3]. Also, to 

evaluate the efficiency of the proposed MCBG mixture 

model in combining information of two sequences, the T2 

and DE sequences were segmented separately using the 

traditional EM segmentation framework, where the multi-

component univariate Gaussian model was used[8].  

Table 1 provides the segmentation performance of the 

three methods: the Dice metric was used as the error meas-

ure: Dice=( |     |) (|  |  |  |) , where    and    are the 

manual and automatic segmentation results respectively.  

Fig. 2 provides a typical example of the segmentation 

results by the three compared methods. Neither of the atlas 

based segmentation method or the traditional univariate EM 

segmentation algorithm performed well on the infarct re-

gions in the DE MRI image. By contrast, the proposed 

method combined the information from the T2 image and 

more accurately delineated the myocardium in both the two 

MRI sequences.  

 

4. DISCUSSION AND CONCLUSION 

 

In this paper, we have presented an automatic method for 

the segmentation of myocardium from MRI data of myocar-

dial infarction patients. We proposed a novel MCBG mix-

ture model to combine the complementary information from 

the two sequences. The EM framework was adopted to 



estimate the segmentation and model parameters, where a 

probabilistic atlas was also used. 

The proposed method has been tested on six datasets. 

The results showed that the performance of the proposed 

method achieved Dice score 0.623±0.129 for T2 MRI and 

0.643±0.084 for DE sequences. This was significantly better 

than the result of the atlas-based method, which achieved 

Dice score 0.484±0.106 and 0.576±0.103 for T2 and DE 

images respectively. This is because the EM algorithm can 

iteratively calculate the parameters of MCBG mixture 

model to fit the intensity of the images and thus improves 

the voxel-based classification on the base of probabilistic 

atlas. Also the results of the proposed MCBG were im-

proved compared to multi-component segmentation solely 

from the DE sequences (Dice score 0.601±0.105), though no 

improvement was observed on the T2 segmentation (Dice 

score 0.624±0.146). This is attributed to the fact that the DE 

sequence has much worse contrast for myocardium com-

pared to T2, especially the infarcted area which can be 

easily misclassified as the blood pool. And the effect of the 

complementary information in DE MRI is covered up in the 

Dice score of T2 segmentation. Therefore, we conclude that 

the MCBG mixture model has the potential to classify the 

infarcts from the DE MRI and identify the edema from the 

T2 sequence, by combining the complementary information 

of the two MRI sequences.  

The MCBG provides a generic framework to model 

multivariate and complex intensity distributions, for low 

contrast and heterogeneous regions. In the future, besides 

classifying the ischemic regions, extending the model for 

image pairs with different resolutions and marginal misa-

lignment will be considered, to improve the applicability of 

the algorithm.  
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Table 1. The Dice score of the myocardium segmentation 

with respect to manual segmentation. 

 

Methods T2 DE 

Atlas-based [1] 0.484±0.106 0.576±0.103 

Separate MC 0.624±0.146 0.601±0.105 

Proposed MCBG 0.623±0.129 0.643±0.084 

 

   

   
Fig.2. Segmentation results and dice score of one data set. 

Left column: atlas-based; Middle column: Separate MC; 

Right column: Proposed MCBG. Top row: T2 sequences; 

Bottom row: DE sequences. 

 


