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Abstract: As image-guided navigation plays an important role in neurosurgery, the spatial registration mapping
the pre-operative images with the intra-operative patient position becomes crucial for a high accurate surgi-
cal output. Conventional landmark-based registration requires expensive and time-consuming logistic support.
Surface-based registration is a plausible alternative due to its simplicity and efficacy. In this paper, we propose a
comprehensive framework for surface-based registration in neurosurgical navigation, where Kinect is used to auto-
matically acquire patient’s facial surface in a real time manner. Coherent point drift (CPD) algorithm is employed
to register the facial surface with pre-operative images (e.g., computed tomography (CT) or magnetic resonance
imaging (MRI)) using a coarse-to-fine scheme. The spatial registration results of 6 volunteers demonstrate that
the proposed framework has potential for clinical use.
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0 Introduction

Image-guided surgery has been widely used in oper-
ating room and benefited due to its time-saving and
minimally invasive features, especially in the area of
neurosurgery. One of the most important tasks is to
align the intra-operative patient’s position with the pre-
operatively acquired diagnostic image series (e.g., com-
puted tomography (CT) or magnetic resonance imaging
(MRI)), which shows the patient’s internal structures.
With a surgical instrument mapped with the preoper-
ative images, the surgeon can avoid damaging delicate
structures during a treatment[1].

Landmark-based registration is the most popular ap-
proach used in routine clinic[1]. However, artificial land-
marks are not convenient, since they are usually stuck
to patients’ skin before acquiring the image data, and
they have to be fixed in position during all the navi-
gation registration procedures. Anatomical landmarks
are difficult to be defined, especially for inexperienced
surgeons. Another optional registration approach is
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based on the markerless surface. In many image-guided
neurosurgeries, 3D probes (e.g., electromagnetic, opti-
cal) or laser scanners are used to acquire the geometric
surface points on the patient’s face in patient space[2].
However, it is time-consuming to gather surface infor-
mation with probes contacting patient’s face and it may
introduce unexpected human operation error. Laser
scanners can get the whole surface of patient’s face
with contact-free operation, and using a high-resolution
laser scanner for spatial registration achieves promising
results[3-4]. However, high-resolution laser scanners are
expensive and the surface collection also involves mov-
ing the device freehandedly by a surgeon[5].

During the neurosurgery the patient’s head position
may be changed, so the alignment mapping patient
space with image space is affected. In routine clinic, a
reference panel is attached to the patient’s head. There-
fore, the reference’s transformation can be detected
and calculated by the optical navigator instantly. Af-
terwards, the previous spatial registration is updated.
However, the reference panel may be occluded by the
surgeon, and cannot be detected by the tracking de-
vice.

In this paper, our main contribution is to design a
comprehensive framework to solve these problems in
neurosurgical navigation. We choose Kinect[6], which
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is a hands-free device, to obtain the facial surface of a
patient in real time automatically, and register it with
the pre-operative images. Kinect enables us to conduct
registration during neurosurgery. The surface data sets
for registration are from different modalities. There-
fore, we use a coarse-to-fine scheme for robust and effi-
cient registration. Experimental results of 6 volunteers
demonstrate that the proposed framework has potential
for clinical use.

1 Method

1.1 Framework
Optical navigator is used as tracking device (Fig. 1).

It can track position of optical sensor which is attached

to the surgical device during a surgery. A surface-
acquiring device is used to sample facial points of pa-
tient. In this study, we use Kinect to get the facial
surface. Kinect integrates a color camera to provide
color image, an infrared (IR) emitter to emit 830nm IR
light beams and an IR camera to read the IR beams re-
flected back to the sensor. The reflected beams are con-
verted into depth information measuring the distance
between the subject and sensor[6]. Each depth frame
is presented as a low-resolution image with each gray
value related to the distance. Depth image data can be
transformed into 3D data stored as (x, y, z). The x, y
and z axes make up a right-handed coordinate system
(Fig. 1). The quality of the 3D data is influenced by
the low resolution of Kinect[6].
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Fig. 1 Neurosurgical navigation system and coordinate transformations of spatial registration

In Fig. 1, coordinate transformations involved in the
spatial registration are shown. The calibration is nec-
essary to transform Kinect coordinate to that of the
tracking device. A popular approach is to find the
correspondence T M

td←kinect between checkerboard’s cor-
ner points from two devices, while capturing a mov-
ing point over time is an alternative way[7]. Then,
T M

world←td is provided by tracking device mapping its
coordinate to world coordinate. T M

world←image, which is
defined by medical instrument acquiring pre-operative
images, aligns world coordinate with image coordinate.
The key point of this study is to achieve registration
between Kinect data and image data within world co-

ordinate.
1.2 Data Acquisition and Face Segmentation

Figures 2(a) and 2(c) show our color and depth im-
ages obtained from Kinect sensor. In this study, we
divide the facial data acquisition into 6 steps:

(1) Segment human body from depth image using
Kinect software development kit (SDK) in order to
check whether there is a human in front of the sensor.
As shown in Fig. 2(b), the human is labeled in blue.

(2) Convert the human body’s depth data to 3D data
in depth camera coordinate by Kinect SDK.

(3) Track human’s face on the color image using a
tracker from Kinect SDK (Fig. 2(d)).
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Fig. 2 Kinect imaging and face segmentation

(4) Convert the tracking vertices to 3D data in Kinect
color camera coordinate.

(5) Transform the 3D tracking results in Kinect
color camera coordinate to depth camera coordinate
(Fig. 2(g)). The vertices determine the location of hu-
man’s face in Kinect depth camera coordinate.

(6) Segment human facial surface from body limited
to boundary of the 3D tracking vertices.

However, tracking results may contain noise around
boundary vertices, such as human’s hairs which are
not features of face (Fig. 2(d)). So we reduced the
noise (red vertices in Fig. 2(e)). Then, we join adjacent
boundary vertices of the rest using linear interpolation
in xOy plane and generate a closed curve (Fig. 2(f)).
The facial points whose xOy data are inside the curve
are finally segmented (Fig. 2(h)). Figure 2(i) shows col-
ormap of the segmented face, where red means distance
between Kinect and the human is large and blue de-
notes the distance is small.

For pre-operative image series, firstly Otsu
algorithm[8] is applied to the patient’s head MRI/CT.
After the threshold, the pixels inside the head surface
are labeled with 1 and outside with 0. Then, we search
along rays casting frontally through MRI/CT volume,
and save the edge points with intensity changed from

0 to 1. By integrating the edge points, patient’s facial
surface is extracted from MRI/CT.
1.3 Coarse-to-Fine Registration

Direct registration between the pre- and intra-
operative data may result in local minimum and inaccu-
racy, since Kinect data are low-resolution and asymme-
try with MRI/CT data. Therefore, we design a coarse-
to-fine registration scheme to improve the robustness.
1.3.1 Coarse-Registration

We employ principal component analysis (PCA) to
define a bounding box with three main oriented axes
for two sets of facial points, respectively. PCA does
eigendecomposition of data’s covariance matrix. Eigen-
vectors that correspond to the three largest eigenval-
ues define oriented axes of the points. The origin is
at the mean point. Then, we assume that T M

coarse =
[λ1 λ2 λ3 λ4]T, where λi (i = 1, 2, 3, 4) are 4D
vectors and E(X) represents the diagonal matrix with
diag(X, X, X, X). The transformation is defined as:

⎡
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, (1)
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where μi (i = 1, 2, 3, 4) and νi (i = 1, 2, 3, 4) contain
eigenvectors and centroids of two surface data sets, re-
spectively. Therefore, we can obtain the transforma-
tion matrix T M

coarse by solving the equation set. This is
coarse registration which can provide surface registra-
tion with a fine start to converge quickly.
1.3.2 Fine-Registration

Iterative closest point (ICP) is a natural choice be-
cause of its simplicity and low computational complex-
ity. In recent years, many methods have been proposed
for robust point set registration, which are able to han-
dle noise, outliers, and occlusions[9-12]. However, most
of them are not fast enough for our clinical application.
The algorithm coherent point drift (CPD) is both ro-
bust and efficient, owing to the use of fast Gauss trans-
form and low-rank matrix approximation to reduce the
computational complexity[13]. CPD explicitly formu-
lates the alignment of two point sets as a maximum
likelihood (ML) estimation problem of Gaussian mix-
ture model (GMM)[13]. If we align point data set S to
T , s and t represent one point from S and T respec-
tively, CPD regards the transformation φ(s) as GMM
centroids, and T are points generated by GMM. Let
M and N be point numbers of S and T . The GMM
probability density function is:

p(t) =
M+1∑
m=1

P (m)p(t|m), (2)

where P (m) is a weight coefficient; p(t|m) =
1

(2πσ2)D/2
exp−

‖t−φ(s)‖2
2σ2 , D represents dimension of

point sets and σ2 is covariance parameter. Especially,
the uniform distribution p(t|M +1) = 1/N accounts for
noise and outliers whose weight is P (M + 1) = ω. We
set P (m) = (1−ω)1/M (m = 1, 2, · · · , M). It indicates
that ω = 1 means only noise and outliers remained,
ω = 0 represents no noise or outliers. The transfor-
mation is calculated by maximizing likelihood function
using Expectation Maximization (EM) algorithm.

2 Experiments and Results

2.1 Work Platform and Surface Acquisition
We tested our surface-based spatial registration ap-

proach with 6 volunteers. MRI examinations were per-
formed at Renji Hospital (Shanghai, China) using GE
3.0T Signa HDxt machine (GE Medical Systems, USA).
For each volunteer, MRI head scan were taken with
512 pixel × 512 pixel × 252 pixel and spatial resolution
was 0.429 7mm × 0.429 7mm × 1 mm. Kinect reso-
lutions were 640 pixel × 480 pixel for color image and
320 pixel× 240 pixel for depth image. The frames were
fed into a PC (32-bit windows, Pentium(R) Dual-Core
CPU, 3GB RAM). Surface contains nearly 71 000 points
acquired from MRI and 1 600 points from Kinect, where

point coordinate unit is millimeter. Two surfaces are
not symmetry, where most MRI points do not have cor-
responding Kinect points.
2.2 Coarse-to-Fine Registration Results

Firstly, coarse registration was performed by aligning
two oriented bounding boxes of the two facial point sets.
In Fig. 3, the blue surface is from Kinect and the red
one is from MRI.

(b) Position after coarse registration

(a) Initial position of two surfaces

Fig. 3 Performance of coarse registration

For fine registration, ICP usually uses the data set
with small number to search for correspondences in the
data set with large number[14]. Here we use root mean
square (RMS) error to evaluate the registration, which
is defined as mean of the distances between the aligned
point correspondences from Kinect and MRI[14]. In
Fig. 4(a), tolerance stands for stopping criterion, and
we choose 100 for maximum number of iterations. It
shows that ICP performs better aligning Kinect data to
MRI data (blue line). In this paper, we choose tolerance
as 10−5 for ICP, and Fig. 4(b) shows surface distance
colormap aligning data from Kinect to MRI, where red
means the registration error is large and blue denotes
the error is small. For CPD algorithm, it’s necessary
to choose an appropriate value for ω, which is stand-
ing for the weight of noise and outliers. Figures 5(a)
and 5(b) show RMS error and iteration number of reg-
istration versus ω respectively, with tolerance as 10−5.
We choose 100 for maximum number of iterations. Ac-
cording to Fig. 5(a) CPD performs better when align-
ing Kinect to MRI (blue line) than MRI to Kinect (red
line), here we choose Kinect to MRI. The plot of RMS
error versus ω and the plot of iteration number ver-
sus ω are almost constants (blue lines (dash lines) in
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Figs. 5(a) and 5(b)). Therefore, we choose 0.5 for ω.

According to the blue lines in Figs. 4(a) and 5(a),
the RMS error are similar using CPD and ICP aligning
Kinect to MRI. For more comparison, the surface dis-
tance colormap using CPD is shown in Fig. 5(c) with ω
as 0.5, tolerance as 10−5. Figure 5(d) shows surface dis-
tance probability distributions of results in Figs. 4(b)
and 5(c). Finally, 6 volunteer experiments were per-

formed to evaluate the accuracy of the proposed coarse-
to-fine registration method. Table 1 shows the regis-
tration RMS error and the probability of surface dis-
tances (< 1mm) using CPD and ICP. The mean RMS
of CPD-based and ICP-based cases are (1.2 ± 0.1)mm
and (1.1 ± 0.1)mm respectively. The mean distance
(< 1mm) probability of the CPD-based and the ICP-
based cases are 0.525 0 ± 0.053 3 and 0.528 4 ± 0.044 1
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Table 1 RMS error and distance (< 1 mm) probability using CPD and ICP for 6 volunteers

Volunteer
RMS/mm Probability

CPD ICP CPD ICP

1 1.1 1.1 0.572 8 0.547 0

2 1.3 1.2 0.472 7 0.472 7

3 1.0 1.0 0.596 8 0.601 5

4 1.1 1.1 0.534 8 0.524 8

5 1.3 1.2 0.464 7 0.498 1

6 1.1 1.1 0.508 3 0.526 4

Mean ± Std 1.2 ± 0.1 1.1 ± 0.1 0.525 0 ± 0.053 3 0.528 4 ± 0.044 1

respectively. It demonstrates that for our surface regis-
tration CPD-based case performs similar to ICP-based
one.

2.3 Occlusion Situation

During the neurosurgery the reference panel may be
occluded by the surgeon’s hand, so the patient’s head
movement cannot be detected by the tracking device,
which may influence the navigation accuracy signifi-
cantly. Figures 6(a) and 6(b) show the Kinect color and
depth images of a volunteer with her forehead occluded
by her hand. Kinect can recognize the patient’s face

with occlusion noise. Then, the robustness of the pro-
posed registration approach based on CPD can handle
such a hand occlusion situation, while ICP-based reg-
istration is influenced by the hand occlusion (Figs. 6(c)
and 6(d), where red means the registration error is large
and blue denotes the error is small). Figure 6(e) shows
the surface distance probability distribution of RMS er-
ror in Figs. 6(c) and 6(d). We can see that the surface
distances in the CPD-based case tend to distribute on
the small-value portion by comparison. It demonstrates
that CPD is more suitable for our surface registration
with different situations.
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Fig. 6 Occlusion situation

3 Discussion

In modern operating room, laser scanner navigation
system has been used for neurosurgical surgery. Al-

though it can get patient’s facial surface precisely, hu-
man interaction is inevitable. Kinect sensor can get
patient’s facial surface automatically with no human
interaction. Meanwhile we provide a novel method to
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get the patient’s facial points from Kinect color and
depth images. During the neurosurgery, Kinect can ro-
bustly track the human’s face with occlusion noise fol-
lowing head movement, and the registration is updated
using CPD-based coarse-to-fine registration method.
The proposed coarse-to-fine approach is tested to be
more robust and accurate comparing with other tradi-
tional algorithms.

After registration has been performed, image space
and patient space can be mapped together. However,
in clinical applications, the two spaces will always dif-
fer from each other slightly[5]. In general, the clini-
cal error is calculated when the surgeon approaches a
target during the surgery. Z-touch is now a commer-
cial handheld scanner for surface registration manufac-
tured by BrainLabTM with clinically applied precision
of (1.8± 0.5)mm[4]. Another known navigation system
is Surgical Segment Navigator developed by University
of Heidelberg�which can achieve a clinical accuracy of
(1.1 ± 0.3)mm[3]. In our study, Kinect-based spatial
registration is still in the stage of research and has not
yet been applied to any clinical use. However, our reg-
istration RMS is (1.2 ± 0.1)mm, which is comparable
to the RMS of Z-touch in (1.21 ± 0.34)mm[4].

4 Conclusion

In this paper, we propose a new framework for spatial
registration in neurosurgical navigation system based
on Kinect. Kinect is employed to reconstruct patient fa-
cial surface in patient space automatically, where CPD-
based coarse-to-fine registration algorithm is applied for
alignment between the Kinect surface and MRI sur-
face. Experiments show that our registration accuracy
is promising. Although the quality of 3D data gener-
ated by Kinect is low[6], many researches on reconstruc-
tion using Kinect have achieved equal accuracy of laser
scanners in recent years[15-16]. For future work, we want
to integrate Kinect in our navigation system. The sys-
tem can acquire human facial points automatically, and
finally align the patient space with pre-operative image
space before and during the neurosurgery.
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