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Abstract
Purpose Geometric features of the aortic valve play an
important role in many applications, such as the clinical diag-
nostics, shape modeling and image-guided cardiac interven-
tions, especially for the transcatheter aortic valve implan-
tation (TAVI) procedure. However, few works have been
reported on the topic of aortic valve segmentation from trans-
esophageal echocardiography (TEE) sequences. To obtain
accurate segmentation results and further provide valid sup-
port for TAVI, this paper presents a real-time method for
segmenting the aortic valve from intraoperative, short-axis
view TEE sequences, using an improved probability estima-
tion and continuous max-flow (CMF) approach.
Methods The proposed segmentation method includes two
key stages: (1) In the probability estimation stage, five differ-
ent prior frames spanning a cardiac circle are firstly selected
with the aortic valve manually segmented by an expert. Then,
the improved composite probability estimation (CPE) and
single probability estimation (SPE) over the five prior frames
are, respectively, constructed based on their radial average
intensity and radial distance. (2) In the energy function con-
struction stage, the similarity metric is calculated to find
out the matching exponents between the current input TEE
frame and the prior frames. The typical foreground and back-
ground intensities of prior images are therefore used to con-
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struct the corresponding energy function. Finally, the CMF
approach, accelerated with a graphic processing unit (GPU),
is employed to achieve the aortic valve contours in real time.
Results The evaluation study contained 30 sequences, with
each containing 62–146 short-axis TEE frames. The results
were compared with the manual segmentation (ground truth).
The average symmetric contour distance (ASCD), dice
metric (DM) and the reliability of the algorithm reached
0.85±0.21 mm, 0.96±0.01 and 0.90 (d = 0.95), respec-
tively, and the computation time was 57.04±8.98 ms per
frame.
Conclusion The experiment results reveal that the proposed
method can achieve accurate and real-time segmentation of
aortic valve from TEE sequence of short-axis view.

Keywords Aortic valve · Transesophageal echocardiogra-
phy sequence · Image segmentation · Probability estimation ·
Continuous max-flow

Introduction

The aortic valve is an important cardiac structure and plays a
key role in circulatory system. Therefore, it can cause a seri-
ous problem if the aortic valve malfunctions like the occur-
ring of aortic stenosis (AS). AS is highly prevalent, especially
in elderly people, and the morbidity rate is likely to increase
with population aging [1]. Among the untreated patients,
approximately 50 % die in the first 2 years after symptoms
appear [2]. A definitive therapy to cure severe AS is the
valve replacement procedure. However, many patients do
not undergo this surgical procedure due to their advanced
age or significant comorbidities. Transcatheter aortic valve
implantation is a less invasive procedure for such group of
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patients, to replace a bioprosthetic valve without the need of
sternotomy or cardiopulmonary bypass, which relies heavily
on intraoperative image guidance [3].

The real-time 2D ultrasound (US), such as the trans-
esophageal echocardiography (TEE) and transthoracic
echocardiography (TTE), is commonly used to visualize the
intraoperative aortic valve in TAVI [4,5], due to its ability
to capture the fast moving structures [6]. Compared with
TTE, TEE places the transducer inside the esophagus and
can obtain images with better image quality [7].

To provide an accurate position for valve replacement,
several works have addressed the importance of register-
ing the intraoperative TEE sequence to a dynamic 3D aor-
tic model derived from the preoperative computed tomog-
raphy. In this registration, segmenting the aortic valve from
the TEE sequence is one of the fundamental steps [8]. How-
ever, obtaining the accurate and real-time segmentation is
challenging, due to the following degradation factors [9,10]:

1. Leaflet motion: the three leaflets of the aortic valve can
have intense change of positions and shapes during the
valve’s opening and closing movement in a cardiac cycle.

2. Artifacts: the heavy calcification of the leaflets causes
large shadowing artifacts, and it is difficult to detect the
artifacts in advance to guarantee that they would not inter-
fere with the postoperative processing.

3. Speckle noise: speckle noise, inherent to US images, is
also one of the major difficulties in our segmentation task.

4. Acquisition on polar coordinates: the US images are col-
lected in the polar coordinate system, which leads to a
nonuniform intersampling space.

All the frames of a TEE sequence are not reason-
ably accessible for simple but prohibitively time-consuming
manual segmentation method. Therefore, the automatic or
semi-automatic algorithms become increasingly desirable.
Although a number of works have been investigated on the
methodologies of aortic valve segmentation, the methods
applicable to segmenting it from TEE sequences are limited.
Yet the literature on echocardiography segmentation of other
tissues, especially for left ventricle, is rich. The left ventri-
cle is also a dynamic structure, as it needs to receive blood
from the left atrium and pump it to the aorta. Therefore, the
research on left ventricle segmentation can be a good ref-
erence for the aortic valve segmentation task. Early works
on the left ventricle were done to segment the single frame,
while the recent research has taken the whole cardiac cycle
into consideration.

Wolf et al. [7] applied a semi-automatic segmentation
algorithm called the restricted optimal path exploring seg-
mentation (ROPES) to TEE data. After searching candidate
contour points fulfilling a multiscale edge criterion, they are
connected to generate a closed contour by minimizing a cost
function.

Chen et al. [11] solved a coupled minimization problem
for the segmentation of cardiac US images in long-axis view
by incorporating a prior shape and intensity profiles in the
active contour framework. The prior information helped to
estimate the balance between the image information and the
shape priors. The algorithm was applied to two-chamber end
diastolic cardiac US images to trace the epicardial borders.

Carneiro et al. [12] proposed a segmentation method for
the left ventricle from US data using deep neural networks
and efficient searching methods. Their algorithm increased
robustness to imaging conditions absent in training data and
simplified the complicated search process of pattern recog-
nition with high accuracy. However, it requires a large set of
training images.

The mitral valve is another important cardiac valve, yet
there are few methods reported to obtain an accurate segmen-
tation result. Schneider et al. [6] presented a graph-cut-based
algorithm for the segmentation from 3D US images. They
adopted the max-flow algorithm to solve the optimization
problem [13]. A single user-specified point near the center of
the valve was required, but it was the only manual input. The
algorithm iterates until the metrics converge, which make it
operator-independent. Illustrative results were demonstrated
on the 3D US images with closed mitral valves.

Lang et al. [9] used a continuous max-flow (CMF)
approach to extract the aortic valve of TEE images from
both short-axis and long-axis views. This method constructs
an energy function using the prior information coming from
the previous three segmentation results in a cardiac cycle.
However, these previous segmentation results only represent
parts of the aortic valve variation, thus make the segmentation
accuracy compromised. The authors evaluated the algorithm
on a small set of 8 subjects (122 images), and the computation
time was not reported.

In this work, we propose a real-time aortic valve seg-
mentation method from intraoperative short-axis view TEE
sequences. The method is based on an improved probability
estimation algorithm and the graphic processing unit (GPU)
[14] accelerated CMF scheme. It consists of two steps: firstly,
we construct the probability estimation from the manual
segmentation results of a small number of selected frames.
This probability estimation is used as reference for the typ-
ical foreground and background intensities, regarded as the
a prior information. In the second step, the prior informa-
tion is incorporated into the construction of the energy func-
tion of the GPU accelerated CMF approach. By using this
prior information, the new method becomes robust against
the degradation factors of the aortic valve images, which is
significant for clinical applications. The main contribution of
this work includes the four aspects:

1. To address the difficulties caused by the aortic valve
motion, five prior images that mostly represent the differ-
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ent positions and shapes of the aortic valve are selected
among a cardiac cycle by an expert.

2. The traditional computation of the composite probabil-
ity estimation (CPE) and single probability estimation
(SPE) has the limitation of sparsity in the constructed
probability maps, due to the small number of samples
from the chosen prior images. In this work, we propose
a new formulation of the probability estimation using
the Bayesian theorem and Parzen window estimation. In
addition, radial average intensity, instead of single inten-
sity, is used to optimize the probability estimation. As a
result, the probability map is more robust for all frames
to be segmented.

3. The GPU accelerated CMF approach reduces the compu-
tation load and provides real-time segmentation, which
has great significance for medical image segmentation,
especially for the intraoperative sequence segmentation.

4. The proposed segmentation method was applied to the
image-guided TAVI procedure on animal studies and
achieved accurate results of the aortic valve annulus from
the intraoperative TEE sequences in real time.

Methods

Method overview

The aortic valve structure from the short-axis view of TEE
is shown in Fig. 1. When the three leaflets close, they can
divide the valve into several discontinuous segments, and
when they open, the short-axis view becomes as a whole.
Here, our segmentation task is to delineate the annulus
of the structure, in which the edges inside the valve are
ignored.

The workflow of the proposed method is shown in Fig. 2.
It includes two major steps:

Leaflets Annulus Annulus

(a) (b)

Fig. 1 Structure of aortic valve from short-axis view of TEE. a Closed
aortic valve, b open aortic valve

1. Probability estimation stage: a new formulation of the
probability estimation is proposed based on the Bayesian
theorem and Parzen window estimation.

2. Energy function construction stage: appropriate energy
functions are constructed for each frame to be segment-
edle.

Continuous max-flow image segmentation

In continuous space, medical image segmentation with two
regions can be described as a minimization problem of an
energy function [15] (Eq.1), which can be solved by the CMF
approach [16]:

arg min
λ∈[0,1] E (λ) =

∫

�

(1 − λ (x)) Cs (x) dx

+
∫

�

λ (x) Ct (x) dx

+
∫

�

|∇λ (x)| C p (x) dx (1)

where � denotes the set of pixels in the image. λ (x) ε[0, 1] is
a labeling function which labels image pixel x as foreground
or background. Cs(x) and Ct (x) are regional properties that
can be interpreted as penalties to assign a pixel as foreground
or background based on image properties, respectively, and
C p(x) is a boundary property, which represents a penalty
for a discontinuity between two pixels. |∇λ(x)| is the total
variation of the labeling function.

Compared with the typical graph-cut approach on discrete
space [13,17], CMF has an advantage of avoiding grid bias
that can result in artifacts in the segmentation.

Probability estimation

Image gradients or differences in intensity distributions
between the foreground and background are highly relied
when segmenting ultrasound images [6,18,19]. However,
because of the rapid motions and low image quality, it is
difficult to utilize this information for obtaining accurate seg-
mentation from TEE sequence.

As shown in Fig. 1, the shape of the annulus of the aortic
valve resembles an ellipse, and the pixels close to the cen-
troid of the manual segmentation have higher probability of
being the foreground, regardless the intensity distributions.
Therefore, to correctly delineate the annulus, a distance con-
straint should be considered. On the other hand, for the frame
of a closed aortic valve, the pixels with high-intensity val-
ues near the centroid are corresponding to the three leaflets
and more likely to be foreground, while the pixels with high-
intensity values far from the centroid are corresponding to
the edge of the aortic root and more likely to be background.
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Fig. 2 Work flow of the proposed segmentation method

Therefore, intensity and radial distance can be both used to
construct the probability estimation function, which was gen-
erated by calculating the conditional probability [4] of each
pixel being the foreground based on its intensity and radial
distance [9].

Radial average intensity In the previous work [20], single
intensity of the current pixel was used with its radial distance
to construct the CPE and SPE. However, when some segment
of the aortic valve is blurry because of the rapid motion of the
leaflets, it is very hard to accurately detect the valve contour.
In order to tackle this problem, radial average intensity is
applied to replace the single intensity of the current pixel to
construct CPE and SPE, which makes full use of the adjacent
pixels near the centroid in the radial direction, as shown in
Eq. (2):

I ∗ = 1

n

i=n∑
i=0

Ii (2)

where I ∗ is the radial average intensity of the current pixel, I0

is the single intensity of the current pixel, Ii (i = 1, 2 . . . n)

represents the intensity of the n-th adjacent pixel near the
centroid in the radial direction, and n is the number of the
adjacent pixels (here, n is set to 5).

Formulation of probability estimation The traditional com-
putation of the CPE and SPE has the limitation of sparsity in
the constructed probability maps, due to the small number of
samples from the chosen prior images [20]. A new formula-
tion of the probability estimation is proposed here using the
Bayesian theorem [21] and Parzen window estimation [22].
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The probability map is defined to the posterior probability
of the joint distribution, radial distance and intensity (R, I ):

P (F |(R, I )) = P ((R, I ∗) |F) P(F)

P (R, I ∗)
(3)

where P(R, I ∗) is the probability of a pixel whose radial
distance and radial average intensity are R and I ∗, respec-
tively. P(F) is the prior probability of being foreground, and
the joint probability is estimated using the Parzen window
method:

P (r, ι|F) = 1

Npz

∑
x∈Ω

ωr (R(x)) ωι

(
I ∗ (x)

)
(4)

where r and ι are, respectively, the discredited values of the
radial distance and RAI, Npz is the normalization term:

Npz =
∑

r∈R,ι∈I ∗
(r, ι|F) (5)

ωr () and ωι() are the Parzen window functions, which are
the Gaussian kernel function in this work.

Computation of CPE and SPE Five different prior images,
referred to as prior images {PI}, that can mostly represent the
different positions and shapes of the aortic valve are selected
from a cardiac cycle and manually segmented by an expert.
The segmentation results are used as priors to estimate P(F)

and the joint distribution of (R, I ∗).
For each segmentation result, a bounding box is calcu-

lated. Then, a maximum bounding box, covering the range
of aortic valve movement in the TEE sequence, is determined
using these five individual boxes. To ensure that the aortic
valve is always covered, the maximum bounding box is fur-
ther extended. In this study, x and y axes of the maximum
bounding box are both extended by 20 %. In order to reduce
the computational complexity, the TEE sequence segmenta-
tion is done within the extended maximum bounding box.

For SPE computation with one prior image, Eq. (3) can be
used straightforwardly. The domain Ω in (4) is defined to the
manually segmented foreground region in the corresponding
prior image, and the radial distance of x, R(x), is defined to
its distance to the centroid of the domain �.

For CPE, the region � is defined to the concatenated vol-
ume of all the foreground regions in the prior images. The
radial distance R(x) is defined to its distance to the compos-
ite centroid. Therefore, for prior images PI j , j =1…NPI ,
the computation of CPE is equivalent to:

PCPE (F |(R, I ))

= 1

NPI

j=NP I∑
j=1

P
(
(R, I ∗) |F, P I j

)
P(F |P I j )

P
(
R, I ∗|P I j

) (6)

where NPI, the number of prior images, is set to 5.

In addition, for each prior image PI j , its typical foreground

I j
F and background intensities I j

B , which can well represent
the corresponding foreground and background intensities,
are calculated, respectively, using Eqs. (7) and (8):

I j
F =

∑
x∈F

I (x) ∗ P F
I (x) (7)

I j
B =

∑
x∈B

I (x) ∗ P B
I (x) (8)

where F and B, respectively, denote the foreground region
and the background region, P F

I and P B
I are, respectively,

the probability of intensity I in foreground and background
regions, and I (x) is the intensity of pixel x . In this study, five
groups of I j

F and I j
B are acquired.

Energy function construction

Similarity metric For the current input frame of the TEE
sequence, the probability map is first obtained based on CPE,
and then, Otsu algorithm is used to get an optimal threshold,
where pixels with the intensity higher than the threshold are
remained to comprise a target region A with a centroid C .
Then, a similarity metric (SM) is applied to calculate the
matching information between the prior images and the cur-
rent input frame, as follows,

SM j =
∑
x∈A

√
(Dx − D j

x )
2 + (Ix − I j

x )
2

(9)

where Dx is the distance from pixel x in A to C , and D j
x is the

distance from corresponding pixel x of prior image PI j to its

own centroid, Ix is the intensity of x , and I j
x is the intensity

of x in prior image PI j .Dx (D j
x ) and Ix (I j

x ) are normalized
by Dmax and Imax .

Lower SM means higher similarity, which contributes to
find out the prior image best matching the current input frame
of the TEE sequence, represented by P∗ (with the lowest
SM).

Energy function construction The probability map of current
input frame is updated by the SPE of P∗. IF and IB of P∗
are used to construct the energy function for the current input
frame, as follows,

Cs (x) = |Ix − IF | (10)

Ct (x) = |Ix − IB | (11)

C p (x) = 0.5 (12)

where Cs(x) and Ct (x) are, respectively, the regional items
representing the foreground and background, C p(x) is the
boundary item.
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Finally, a GPU accelerated CMF approach [16] is employed
to get an initial segmentation result. The final result is
obtained after the initial result is multiplied by the updated
probability map.

Experiments and results

Experimental setting

The evaluation study contains 30 subjects (2,211 images), of
which each has 62–146 short-axis TEE frames. The image
data were acquired from a Philips iE33 ultrasound system
with an X7-2t 3D TEE probe (Philips Health-care, Andover,
MA). The experiments were performed under Windows XP
on an Intel Core i7 computer with NVIDIA GeForce GTX
560 graphics card with 1 GB display memory and 256 bit
data width. For evaluation purpose, the automatic segmen-
tation results of the proposed method were compared with
the corresponding manual segmentation, regarded as ground
truth.

Scoring system

A scoring system, consisting of three error measures includ-
ing average symmetric contour distance (ASCD), dice met-
ric (DM) and reliability of the method, was employed to
obtain quantitative performance assessment of the improved
method. ASCD and DM are, respectively, based on contour
and region, which are the most popular measures. They both
measure the conformity between the ground truth and the
automatic segmentation result.

Average symmetric contour distance (ASCD) ASCD is given
in mm and based on the contour points of two segmentations
A and M [23,24]. Here, A means the automatic segmenta-
tion result by the proposed algorithm, and M represents the
ground truth. For an arbitrary contour point of A, p(A), its
Euclidean distance to the closest contour point of M is calcu-
lated using the approximate nearest neighbor technique [25]
and stored, as shown in Eq. (13). To provide a symmetric mea-
sure, for arbitrary contour point of M, p(M), its Euclidean
distance to the closest contour point of A is also calculated
using the same way, as shown in Eq. (14).

d (p (A) , S (M)) = min
p(M)∈S(M)

‖p (A) − p(M)‖ (13)

d (p (M) , S (A)) = min
p(A)∈S(A)

‖p (M) − p(A)‖ (14)

where S (M) and S (A), respectively, denote the set of con-
tour points of M and A. ASCD is then defined as the average
of all stored Euclidean Distance, as shown in Eq. (15):

ASCD = 1

|S (A)| + |S (M)|

⎛
⎝ ∑

p(M)∈S(M)

d (p (M) , S (A))

+
∑

p(A)∈S(A)

d (p (A) , S (M))

⎞
⎠ (15)

ASCD measures a distance between the ground truth and
the automatic segmentation result. Therefore, lower ASCD
means better conformity of the automatic segmentation result
to the ground truth, and 0 represents an ideal segmentation
result.

Dice metric (DM) DM measures the overlap between the
regions surrounded by the automatic segmentation result and
the ground truth [24], which is defined as:

DM = 2RAM

RA + RM
(16)

where RA, RM and RAM are, respectively, the corresponding
automatically segmented region, the corresponding manually
segmented region, and the overlap between them. The region
measurements are based on the number of pixels within each
region.

As RAM � RA(RM ), there is 0 � DM � 1. Higher DM
indicates better performance of the proposed method, and 1
means a perfect segmentation.

The reliability of the method The shape and position of the
aortic valve can vary significantly across different cardiac
phases of a scan, as well as across different scans. To measure
the reliability of the method against this variation, we used
the reliability metric, R(d), introduced in [24]:

R (d) = P (DM > d)

= Number of frames with DM > d

Total number of frames
(17)

R(d) indicates the reliability of the method with DM higher
than d(d ∈ [0, 1], 0 � R(d) � 1). The higher R(d), the
better the performance of the proposed method.

Evaluation of a representative sample

The study gives a representative sample for one subject over
a whole cardiac cycle. For the subject, frames 1, 7, 10, 20 and
23 are choosed as prior images by an expert, and they are in
the order of 0th, 1th, 2th, 3th and 4th. As shown in Fig. 3, the
first row represents the manual segmentation results of the 5
prior frames, and the second row provides the correspond-
ing SPEs. The 5 SPEs have two obvious common properties.
First, from the x axis, since most of the target region of the
valve has relatively low intensity (except the three leaflets
which have relatively higher intensity), the SPEs are central-
ized in the area with low intensity, regardless of the distance.
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(1) frame 1 (2) frame 7 (3) frame 10 (4) frame 20 (5) frame 23

Fig. 3 Single probability estimation of prior frames, 1, 7, 10, 20, 23.
The first row represents the five prior frames where red curve depicts
the ground truth; the second row represents their corresponding sin-

gle probability estimation, where the x axis represents radial average
intensity and y axis represents the radial distance

(a)                             (b)                  (c)

Radial average intensity

R
ad
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l d
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nc
e

Fig. 4 a Composite probability estimation of prior frames; b the current input frame; c probability map of b

Second, from the y axis, the SPEs with small radial distance
are very centralized while those with relatively large distance
are scattered because of the leaflets. The SPEs with relatively
high intensity and large distance represent the leaflets, and
the others depict the other region of the valve. On the other
hand, the aortic valve with different shapes and positions has
different SPEs. Due to the motion of the leaflets, the SPE
of closed valve is scattered in the area with relatively high
intensity and large distance, while SPE of the open valve is
centralized. In addition, the intervals of the intensity and dis-
tance are different for different prior frames. Figure 4a gives
the CPE of prior frames, which has more uniform distrib-
ution than the SPEs. Figure 4b provides one current input
frame, and Fig. 4c shows its corresponding probability map,
where the rectangle around the valve is the dilated maximum
bounding box.

The segmentation result of a representative sample is illus-
trated in Fig. 5. The green and red curves, respectively, repre-
sent the segmentation result of the proposed method and the
ground truth. The example shows how the proposed method

handles the large variations in the shape and position of the
aortic valve and its computation time.

A TEE sequence over a whole cardiac cycle of this subject
approximately contains 30 frames, which record the contin-
uous and regular motion of the aortic valve. For frames 1–12
of the example subject, the aortic valve deformes from com-
pletely closed to gradually open. During this period, the three
leaflets have big change in shape and position. For the rest 18
frames of the cardiac cycle, the aortic valve further deforms
to completely open with slighter change of shape and posi-
tion. Thus, Fig. 5 demonstrates typical segmentation results
of 20 frames among a cardiac cycle, which indicates that the
results of the proposed method have good correlation with
the ground truth.

For frames 1–12, leaflet intensity is much higher than
the other area of the foreground and is similar to the edge
intensity. When the three leaflets are close to the centroid of
the foreground, it is easy to obtain good segmentation result
based on our method, like frame 36 and 37. But if they are
very close to the edge, the leaflet can be potentially regarded
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(1) frame 31 (2) frame 32 (3) frame 33 (4) frame 34 (5) frame 35

(6) frame 36 (7) frame 37 (8) frame 38 (9) frame 39 (10) frame 40

(11) frame 41 (12) frame 42 (13) frame 44 (14) frame 46 (15) frame 48

(16) frame 50 (17) frame 52 (18) frame 54 (19) frame 57 (20) frame 59

Fig. 5 Sequence segmentation results in a cardiac cycle for an example subject (green curve depicts the segmentation result of the proposed
method; red curve represents the ground truth)

as background, like frame 35. For the rest 18 frames, the fore-
ground and background of the aortic valve has big difference
in intensity, which makes it easier to segment based on the
proposed method.

Table 1 described the segmentation details about the exam-
ple subject. Best match means the best matching one of the
prior images for the current input frame based on similarity
metric, which has the lowest SM. ASCD and DM measure
the accuracy of the proposed method, and time (ms/frame)
measures the computation time of the segmentation.

For the current input frame, it has the same best match
with the previous frame or the next frame in most cases,

which indicates the temporal and spatial continuity of the
aortic valve. Among the 51st to the 60th frames, there are
9 frames that have the same best match (4th) due to the
minor change of the aortic valve. The best match of frame
57 is different from the other 9 frames. Table 2 gives the
similarity values between frame 57 and the prior frames.
The third is the best matching one, and fourth is the second
best matching one. The similarity metric between Frame 57
and the third is 0.0633772, and that between frame 57 and
the fourth is 0.0650544, which are very close in fact. This
confirms the temporal and spatial continuity of the aortic
valve.
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Table 1 Similarity metric of the
sequence in a cardiac cycle for
an example subject

Prior frames Frame no. Best match Lowest SM ASCD DM Time

31 0th 0.0719856 0.966526 0.958027 65.32

32 0th 0.1164920 1.152633 0.958860 55.17

33 4th 0.1305630 1.111868 0.957618 73.28

34 1th 0.1436000 1.048660 0.961014 46.12

35 4th 0.1438800 1.315282 0.949242 64.01

36 4th 0.1382050 1.244375 0.952393 74.02

37 1th 0.0803825 0.610405 0.977744 50.69

38 3th 0.0885252 1.024303 0.959161 45.76

39 3th 0.1185420 0.638713 0.973847 51.45

40 2th 0.0874847 0.738706 0.972669 52.33

41 3th 0.1147660 0.895380 0.964423 67.81

42 3th 0.1229320 1.018074 0.958092 54.73

1–0th 43 2th 0.1254650 0.796006 0.969007 50.65

7–1th 44 3th 0.1390120 0.643348 0.975309 68.97

10–2th 45 2th 0.1163350 0.728337 0.970380 41.46

46 2th 0.1229620 0.706703 0.971994 46.11

20–3th 47 2th 0.1285550 0.703737 0.973190 55.78

23–4th 48 3th 0.1075520 0.671876 0.971704 52.84

49 3th 0.0766738 0.673205 0.973524 61.46

50 3th 0.0531003 0.617790 0.974763 45.69

51 4th 0.0375209 0.674945 0.972719 64.98

52 4th 0.0285839 0.677477 0.971694 65.05

53 4th 0.0179098 0.997223 0.957942 50.55

54 4th 0.0310928 0.768639 0.967497 51.63

55 4th 0.0379531 1.001344 0.935344 62.22

56 4th 0.0585121 0.829548 0.935525 49.46

57 3th 0.0633772 0.537931 0.978623 60.67

58 4th 0.0744649 0.727677 0.972238 51.06

59 4th 0.0742130 1.138794 0.956821 66.73

60 4th 0.0792282 0.775305 0.971952 65.34

Table 2 Similarity metric of frame 57

Prior frames SM Matching index

Frame 57

0th 0.3008190 5

1th 0.1619790 3

2th 0.2297130 4

3th 0.0633772 1

4th 0.0650544 2

In order to intuitively evaluate the performance of the
proposed method, Figs. 6 and 7 plot the ASCD and DM
of the aortic valve segmentation as functions of time step.
For most of the frames, the performance differs signifi-

cantly over the cardiac cycle. Lower ASCD with higher
DM means high similarity between the automatic segmen-
tation result and the ground truth, indicating the automatic
segmentation result has good correlation with the man-
ual segmentation. Figure 8 plots the reliability of the pro-
posed method as a function of d(d = 0.93, R(d) =
1; d = 0.94, R(d) = 0.933; d = 0.95, R(d) = 0.9; d =
0.96, R(d) = 0.633; d = 0.97, R(d) = 0.5).

The overall performance of the proposed method over the
30 sequences and 2,211 frames is summarized in Table 3.
Segmentation results of the proposed method correspond
well with the ground truth, with ASCD and DM being
0.85±0.21 mm and 0.96±0.01, respectively. Based on the
GPU accelerated CMF approach, the method achieved real-
time segmentation for the TEE sequence. The computational
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Fig. 6 Example of variation of ASCD as a function of the time step

Fig. 7 Example of variation of DM as a function of the time step

Fig. 8 Reliability of the proposed algorithm

Table 3 ASCD, DM, reliability of the algorithm and processing time
per frame; ASCD and DM are expressed as mean±SD

Items ASCD DM Reliability
(d = 0.95)

Time

Our method 0.85±0.21 0.96±0.01 0.90 57.04±8.98

speed was increased by a factor of around 3.1 compared to
that without GPU acceleration. As reported in Table 3, it only
needs 57.04±8.98 ms to segment a frame.

Discussions

To deal with challenges coming from the complex motions
of the aortic valve, we combined the a prior information
from multiple prior frames to assist the automated segmen-
tation in TAVI, which improved the performance compared
to the existing method [9]. This prior information is obtained
offline, i.e., before the intervention procedure. During the
intervention, the segmentation does not require any user
interaction, meaning an automated and real-time delineation
of the aortic valve throughout the whole intervention proce-
dure.

The user selected five frames, which can best represent the
different positions and shapes of the valve, as the prior frames
from approximately 30 frames among a single cardiac cycle.
Thus, they can further provide additional prior information
for the segmentation. For each of the prior frames, both the
SPE and the CPE were, respectively, constructed. The prob-
ability function is a joint distribution of the radial average
intensity and the radial distance. The distance is relative to
the centroid of the region of interest, which is defined in (3)
and (6). Here, radial average intensity was used instead of sin-
gle intensity of the current pixel. The adjacent pixels near the
centroid in the radial direction were also taken into consid-
eration. Radial average intensity made it easier to accurately
detect the valve contour, especially for the blurry segments
of the valve. To construct the CPE and SPEs, a new formu-
lation, based on the Bayesian theorem and Parzen window
estimation, was used to estimate the probability. Compared
with the traditional computation in [20], this new method
overcomes the limitation of sparsity in the constructed prob-
ability maps. For the sequence to be segmented, the GPU
accelerated CMF approach significantly decreased the com-
putation time, to only 1.7 s for the segmentation of a whole
cardiac cycle. This computation time allows the aortic valve
segmentation to be performed in real time.

To evaluate the proposed method, we compared our results
with the manual segmentation, on a test dataset containing
30 sequences and 2,211 frames in total. It should be noted
in Fig. 5 that our method have some slight deficiency in
local concavities or convexities, but the overall segmenta-
tion result is accurate. The results demonstrated that the pro-
posed method can reliably segment the aortic valve from the
intraoperative TEE sequences, with ASCD and DM being
0.85±0.21 mm and 0.96±0.01, respectively. This can be
considered a clinically acceptable performance. In addition,
the reliability of the proposed method is 0.90 when d = 0.95,
which illustrates good robustness when dealing with complex
frames of the sequences.

Compared with [9], we not only combined the information
from more prior TEE frames over a cardiac cycle, but also
constructed both CPE and SPE. CPE is a probability func-
tion using all prior TEE frames, while SPE is a probability
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function representing a specific prior TEE frame. Therefore,
SPE contains prior probability distribution information of the
prior frame best matching the current target frame. Finally,
the probability function is a joint distribution of the radial
average intensity and the distance relative to the geometric
center of the region of interest, which is defined in (3) and (6).

For each input TEE frame, the typical foreground and
background intensities of the best matching prior frame was
used to construct the energy function of the current input
TEE frame, making the construction more accurate. To get
an impartial comparison, we selected the same number (i.e.,
three) of prior frames as [9]. The result reveals that the pro-
posed method is superior (ASCD: 0.92±0.23 mm versus
0.95±0.88 mm [9]; DM: 95.5±1.2 % versus 94.0±2.0 %
[9]).

The clinical realization of this approach could be feasible
for image-guided TAVI procedure. TEE imaging itself is an
attractive complement to CT and MRI during surgery, thanks
to its safety, comparative low cost, ease of use, and being free
from the compatibility problems between TEE imaging and
standard OR equipments. Now, the proposed method solved
the challenging problem of TEE segmentation in TAVI pro-
cedure by providing an accurate and real-time segmentation.
It only needs to manually select and segment 5 prior frames
before the procedure. Manual segmentation of the 5 prior
frames can be obtained offline, and it has minimal disruption
to the intraoperation. In the real-time scenario, the prior infor-
mation becomes critical to maintain the high accuracy with-
out decreasing computation efficiency, making the proposed
method applicable in TAVI. We believe that our proposed
method can make a good contribution to the image-guided
TAVI procedure.

Conclusions

In this work, we have proposed a GPU accelerated CMF
approach for aortic valve segmentation from intraoperative
short-axis view TEE sequences using an improved prob-
ability estimation method. The strengths of this proposed
method include: (1) selecting sequence-specific prior frames
effectively, (2) constructing proper probability estimation,
(3) providing accurate and real-time segmentation of the aor-
tic valve. The segmentation method was validated on a large
range of clinical data, and it achieved good performance. It
should be noted that currently, the segmentation was vali-
dated on short-axis view frames of the aortic valve images,
and these images were acquired from subjects suffering from
slight or moderate AS. Therefore, our future work will focus
on two aspects: (1) to improve the accuracy in dealing with
local details based on active appearance models or object
tracking and (2) to extend the segmentation to the long-axis
view frames.
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