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Shape prior plays an important role in accurate and robust liver segmentation. However, liver shapes
have complex variations and accurate modeling of liver shapes is challenging. Using large-scale training
data can improve the accuracy but it limits the computational efficiency. In order to obtain accurate liver
shape priors without sacrificing the efficiency when dealing with large-scale training data, we investigate
effective and scalable shape prior modeling method that is more applicable in clinical liver surgical
planning system.

I;SZ ‘:;ng;;pe composition We employed the Sparse Shape Composition (SSC) to represent liver shapes by an optimized sparse
Shape prior combination of shapes in the repository, without any assumptions on parametric distributions of liver
Segmentation shapes. To leverage large-scale training data and improve the computational efficiency of SSC, we also
Fast optimization introduced a homotopy-based method to quickly solve the L1-norm optimization problem in SSC. This
Scalability method takes advantage of the sparsity of shape modeling, and solves the original optimization problem

in SSC by continuously transforming it into a series of simplified problems whose solution is fast to
compute. When new training shapes arrive gradually, the homotopy strategy updates the optimal
solution on the fly and avoids re-computing it from scratch.

Experiments showed that SSC had a high accuracy and efficiency in dealing with complex liver shape
variations, excluding gross errors and preserving local details on the input liver shape. The homotopy-
based SSC had a high computational efficiency, and its runtime increased very slowly when repository’s
capacity and vertex number rose to a large degree. When repository’s capacity was 10,000, with 2000
vertices on each shape, homotopy method cost merely about 11.29s to solve the optimization problem
in SSC, nearly 2000 times faster than interior point method. The dice similarity coefficient (DSC), average
symmetric surface distance (ASD), and maximum symmetric surface distance measurement was
94.31 +3.04%, 1.12 £ 0.69 mm and 3.65 = 1.40 mm respectively.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Primary liver cancer is one of the most life-threatening cancers
around the world. In China, liver cancer is the second leading
source of cancerous death, with a mortality rate of 26.26 per
100,000 people (Chen and Zhang, 2011). Among the variety of
treatment methods, liver transplantation and liver resection are
the most effective ones (Sotiropoulos et al., 2009). Considering
the lack of available liver from cadaver, living donor liver
transplantation (LDLT) is very important to extend the scarce
donor pool (Broelsch et al., 2000).
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A detailed knowledge of liver anatomy plays a key role in the
determination of surgery strategy for LDLT. The volume of trans-
planted liver portion should be sufficient for the recipient and
the remaining portion should be as large as possible to minimize
trauma to the donor. Besides, since anatomies of intrahepatic
vessels and tumors vary enormously among different patients,
surgeons need to learn the location of the liver portion that would
be cut off, together with the distribution of intrahepatic vessels
and tumors before the surgery to achieve the best proposal for
resection. As a result, preoperative planning based on medical
image is highly helpful for the accuracy and safety of liver surgery.

Segmentation of liver from preoperative images is a key module
in liver surgical planning. However, two important factors put
forward a big challenge for accurate and robust segmentation of
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liver in clinical environment (Heimann et al., 2009). First, the low
contrast and week boundary information in medical images can
easily lead to mis-segmentation. For example, gray levels of the
liver and its adjacent tissues are very similar, which renders
the boundary hard to detect. Second, intrahepatic tumors often
cause inhomogeneous gray levels and misleading boundaries, so
these tissues may not be successfully preserved in segmentation
results. These factors make prior information about liver shapes
highly significant for accurate segmentation.

Shape prior-based approaches are more stable against local
image artifacts than traditional methods that solely rely on low-
level appearance cues. For instance, shape prior has been widely
incorporated into watershed (Hamarneh and Li, 2009), geodesic
active contours (Leventon et al., 2000), level set (Cremers et al.,
2007; Rousson and Paragios, 2000), graph cuts (Vu and
Manjunath, 2008), and it plays an important role in robust segmen-
tation of a variety of organs such as left ventricle (Zhu et al., 2009),
kidney (Xie et al., 2005), liver (Heimann et al., 2006), prostate
(Ghose et al., 2012, 2010), and brain structures (Shen et al,,
2001), etc.

In the application of liver surgical planning, there are two
important requirements on shape prior modeling for liver. First,
the shape prior should be patient-specific and accurate enough.
This is because liver shapes from different individuals have very
complex variations, and tumors often make liver shapes more
complex. A patient-specific shape prior should contain enough
prior information about a specific patient, otherwise the complex
liver shape variations may lead to a big difference between shape
priors and actual liver shapes for the patients, in which case the
inaccurate shape priors will not help segmentation process so well.
In addition, the shape prior modeling process should be scalable
and efficient. Accurate liver shape modeling requires a large-scale
training data and high number of vertices on liver shapes. To be
applicable in clinical environment, the shape prior modeling
method should remain a low-level of time consumption when
training data and vertex number increase to a large scale. In
addition, in many cases training shapes are collected gradually.
When new training shapes arrive, the model should be updated
on the fly with a high requirement on efficiency.

One of the most popular shape prior modeling methods is to use
statistical shape models (SSM) to learn the priori information of
shape variations from many training samples and employ it to rep-
resent an input shape adaptively (Heimann and Meinzer, 2009).
The Active Shape Model (ASM) (Cootes et al., 1995) is widely used
to deal with shapes that follow a unimodal Gaussian distribution.
When shape variations are complex, a mixture of Gaussians may
be able to handle them (Cootes and Taylor, 1999), assuming shapes
follow a multimodal distribution. To overcome the limitation of
ASM on statistical constraint, manifold learning techniques
(Etyngier et al., 2007) can be employed to obtain a non-linear
shape prior. Alternatively, the shape space can be divided into mul-
tiple sub-spaces in which shape distributions are more compact
and easier to model. These methods include population-based
and patient-specific shape statistics (Shi et al., 2008; Yan et al.,
2011; Zhang et al., 2011), hierarchical ASM (Davatzikos et al.,
2003), and subject-specific dynamical model (Zhu et al., 2009), etc.

In the recent years, sparse representation has proven to be
extremely powerful to obtain a compact high-fidelity representa-
tion of the observed signal. It has also been increasingly used in
a lot of image processing applications (Wright et al., 2010), where
using sparsity as a prior led to state-of-the-art results. Gao et al.
(2012) proposed a sparse representation based classification
method and applied it to prostate segmentation. Shi et al. (2014)
employed a patch-based sparse representation in neonatal atlas
construction and successfully recovered more anatomical details.
Sparse Shape Composition (SSC) (Zhang et al., 2012a) is a recently

proposed method for shape prior modeling. It does not need any
assumption on shapes’ parametric probability distribution but
can effectively model complex shape variations. It is also able to
capture gross errors in the input shapes and preserve local details
even when they are not statistically significant in the repository
(Zhang et al., 2012a). Due to these advantages, SSC has been suc-
cessfully applied in cardiac motion analysis (Yu et al., 2013), lung
localization and other applications (Zhang et al., 2012a). It also
showed a great advantage in robust liver shape modeling (Wang
et al., 2013). However, its computational efficiency may be limited
by increasing repository’s capacity and number of vertices on each
shape. To obtain efficient shape modeling, one may decrease the
repository’s capacity or the number of vertices, but the accuracy
will also be reduced. Dictionary learning method can improve
the speed of computation by reducing redundancy of the shape
repository (Zhang et al.,, 2012b). However, the dictionary still
inevitably loses important shape information and it needs to be
updated every time when new shapes are added to the repository.

A widely-used optimization scheme to solve SSC is the interior
point method. It can achieve the optimal solution conveniently but
has a high complexity, which precludes its application when the
problem is on a large-scale (Beck and Teboulle, 2009). Gradient-
based methods are more efficient since they usually make use of
the sparsity of the problem. For example, the iterative
shrinkage-thresholding algorithm (ISTA) and the fast iterative
shrinkage-thresholding algorithm (FISTA) have been successfully
used in signal/image processing with fast speed (Beck and
Teboulle, 2009). Other fast L1-minimization algorithms include
the augmented Lagrange multiplier (ALM) method (Afonso et al.,
2011), iteratively reweighted algorithms (Chartrand and Wotao,
2008), and primal-dual algorithms (Chambolle and Pock, 2011),
with their application in image restoration, reconstruction, denois-
ing, etc. Homotopy (Foucart and Rauhut, 2013) is substantially fas-
ter than interior point method. It continuously transforms the L1
optimization problem into a series of simplified problems whose
solution is fast to compute (Malioutov et al., 2005). Homotopy is
more efficient than other methods such as FISTA and ALM in sparse
representation problems of face recognition (Yang et al., 2010). It
has also been used as a highly effective way to solve the L1
optimization problem in many other fields, such as the recovery
of streaming signals (Asif and Romberg, 2013) and highly
undersampled image reconstruction (Trzasko and Manduca, 2009).

On the other hand, in many medical imaging applications such
as liver image segmentation based on statistical shape models,
training shapes may not come in on batch. This is because it is hard
to obtain a training shape with a large number of vertices in real-
time, and constructing an informative shape repository with a
large capacity is extremely time consuming. As a result, new train-
ing shapes are gradually added to an existing shape repository. In
this case, the optimization of shape modeling should be updated
when new training shapes come. A direct way to solve this prob-
lem is to re-compute the optimal solution using the expanded
repository, disregarding the solution obtained from the previous
repository. However, this method has a low efficiency. A better
way is to take advantage of the previous solution and compute
the new one in a faster speed.

The combination of SSC and homotopy was preliminarily inves-
tigated by Wang et al. (2014). However, the property of homotopy
and SSC was not discussed in detail. In this paper, we study the
applicability of homotopy-based SSC in liver shape modeling to a
further degree and investigate its performance when updating
the modeling on the fly. The new method can improve the accuracy
of SSC-based liver shape modeling by using a large-scale training
data and high number of vertices on each shape. The runtime of
the new method just increases very slowly when the scale of train-
ing samples and the number of vertices grow to a large scale. In
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addition, our method also aims to address the efficient optimiza-
tion problem in shape modeling on the fly. When new shapes are
added to the repository, homotopy-based SSC can achieve the
new solution from a warm-start solution taking advantage of the
previous one, which is much faster than re-computing the solution
from scratch. Thus, the homotopy-based SSC can be more scalable
and applicable in real-time clinical applications.

2. Methods

The workflow of liver shape prior modeling is shown in Fig. 1. It
consists of offline learning, runtime shape modeling and updating
on the fly. In offline learning, liver image data from a large range of
individuals are collected and manually segmented, and segmenta-
tion results are converted to shape representation. After a shape
alignment and correspondence process, the training shapes consti-
tute a liver shape repository. In runtime shape modeling, an initial
segmentation of an input image data is implemented. The segmen-
tation result is represented as a polygonal shape for the input of
SSC. We construct a L1-regulated optimization problem of sparse
representation between the input shape and liver shape repository,
which is solved by homotopy method. The output of SSC is taken as
the shape prior for liver related to the input image data. When new
training shapes are added to the repository, the optimal solution
for SSC is updated on the fly, which can obtain a new optimized
shape representation in a fast speed.

2.1. Sparse shape composition

SSC represents an input shape by a sparse combination of
shapes in the repository. A shape is denoted as a column vector
that is formed by stacking coordinates of all the vertices. A shape
containing | vertices with the dimensionality of p can be repre-
sented by a vector d € R™, where m = [ x p. If a training repository
consists of n shapes, the ith shape can be denoted as d;, and all the
training shapes can be arranged as a matrix D = [d;,dy,...,d,]
€ R™", All the training shapes are pre-aligned using generalized
Procrustes analysis (Cootes et al., 1995), in order to put them in a
common coordinate system. Considering an input shape y € R™,
it can be transformed to the common canonical space of D by a spa-
tial transformation operator T with a parameter vector f. The
transformation result is y’' = T(y,8). The SSC representation is
obtained by solving the following L1-norm optimization problem:

argmin {|x, + el }. sty - Dx—el, <n (1)

where x € R" denotes the coefficients for training samples, and
e ¢ R™ represents the gross errors in the input shape. The minimiza-
tion of L1-norm |X||; + ¢|le||; generally enforces the sparsity of
shapes in the repository and that of gross error. ¢ controls the
weight between the sparsity of x and that of e. We call Dx + e the

SSC represented shape. The L2-norm term measures the difference
between the input shape and the SSC represented shape, and it
denotes the accuracy of the sparse representation result. By solving
this L1-norm optimization problem, the combination of shapes in
the repository is obtained as Dx, and it is transformed back to the
original coordinate space of y, thus the output of SSC is accepted
asy’ =T '(Dx, p).

2.2. Optimization via Linear Programming (LP)

The problem in Eq. (1) can be converted to a LP problem and
solved by interior point methods, which have a complexity of
polynomial time. At each iteration, the LP method will invert a
(n+m) x (n+m) matrix, and the complexity will be O((n +m)?).
This method may be well used when the repository’s capacity
and vertex number are small. However, the problem of liver shape
representation is often large-scale, and the potential advantage of
sophisticated interior point methods will often be precluded
(Beck and Teboulle, 2009).

2.3. Optimization via proximal gradient

The problem of Eq. (1) can be converted to the following
equivalent one:

(1, . ,
argmin {51y’ - Dx— el + A(Ix], + el } @

where / controls the weight between the L2- and L1-norm. x and e
can be stacked to form a new vector X' € R**™, thus the problem in
Eq. (2) can be converted to an equal optimization problem that
deals with just one variable x'. We define A = [D I(m)] € R™ "™,
where I(m) is a unit matrix of size m. Thus, Eq. (2) can be written as:

M ! M l ! ! 1 !
argmin Fi,(x) = argmin {5 '~ Ax} + 21, } 3)
X/ x

where the L1-norm is defined as ||x'||; = |||, + &[le]};.
Gradient-based methods for solving Eq. (3) are obviously more
efficient than LP, since the main computational cost of these
methods is due to matrix-vector multiplication related to A or
A". One of the most popular gradient-based methods is the
iterative shrinkage-thresholding algorithm (ISTA) (Daubechies
et al,, 2004). The computational cost of ISTA is relatively cheap.
The advantage of ISTA is its simplicity. However, it has also been
recognized as a slow method with a worst-case convergence of
O(1/k). The fast iterative shrinkage-thresholding algorithm (FISTA)
was proposed to accelerate the convergence rate of ISTA (Beck and
Teboulle, 2009). FISTA considers a method that is similar to ISTA,
and it preserves the computational simplicity of ISTA but has a glo-
bal better rate of convergence which is 0(1/k?) (Nesterov, 1983).

]
| - i
| | Training Manual Training Liver Shape Alignment Liver Shape [ | i New Training
|| Data Segmentation Shapes And Correspondence Repository : Shapes
| |
| Offline Learning | I : H
Updating
On The Fly

|

| [Input CT Initial N Input L) L1-regulated N
| Data Segmentation| “|Liver Shape Optimization Problem
|

|

|

Solve by [-1-¢ [ Output Liver [ |
Homotopy Shape |
|

|

Homotopy-based SSC

[ Runtime Shape Modeling

Fig. 1. Workflow of liver shape prior modeling using homotopy-based SSC. The two gray blocks show our key contributions in the whole system.
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2.4. Optimization via homotopy method

Homotopy method exploits a simple geometric property of the
solution space of Eq. (3), and it traces solutions of Eq. (3) from one
value of 2 to another lower value. At a large value of Z, the sparsity
of shapes and gross errors are favored. With the decrease of /4, the
accuracy of the optimal solution has a relative higher weight. We
use X{,, to represent the optimal solution at a certain value of 2.
When 1 — oo0,X(; becomes 0; when 1 — 0,X(, converges to the
solution of Eq. (1). We can define y={X(; : 2 € [0,00)}, and it iden-
tifies a solution path resulting from the change of /1 from oo to 0.

The subdifferential of F(;)(x’) in Eq. (3) is defined as:

OF ) (X) = AT (AX —y') + 20X [, 4)
where the subdifferential of the L1-norm is given by
X[y ={veR"™:vi=0x|, j=1,2,...,n+m} (5)
sgn(x;) if x; # 0
| = . =1,2,..., 6
o] {[171} ifx =0 nm ®)

To achieve the optimal solution of Eq. (3), the subdifferential of
F(;(x') should be set to zero. This is equivalent to
T / / _ ) 7 H !
{ (A" (AX' —y"); = —Asgn(x)) if x;#0

(AT(AX —y));| < 4 if X{ =0

(7)

The support set of X, is denoted as I'. At any value of 4, the
optimal solution X(; is completely determined by I" and its sign
sequence (Asif and Romberg, 2013). I' changes only at certain
nodes of /, and the solution path y follows a continuous, piece-
wise-linear function of 4 (Osborne et al., 2000; Yang et al., 2010;
Donoho and Tsaig, 2008). To achieve a decreasing sequence of /,
one just need to identify break-points that lead to changes of the
support set I (Asif and Romberg, 2013). The property of homotopy
is illustrated in Fig. 2 for a simple sparse shape representation
problem. The input shape was constructed by a sparse combination
of shapes in the repository and it contained no gross error. This
simplified problem just dealt with x, and it optimized the repre-
sentation coefficient of each training shape. Fig. 2(b) shows the
solution path with decrease of i. The homotopy algorithm started
with a large value of /, where the solution was x = 0. White dot
lines showed break points where the support set I' changed. When
/. was decreased to a certain number, the solution reached the
representation coefficients used in Fig. 2(a).

At each iteration, homotopy will find a new break point, and I"
should be updated. In the problem of liver shape modeling based
on SSC, there are four situations related to the update of I'. First,
one zero element of x changes to nonzero value, indicating the

y D

(a) An example of sparse shape repre-
sentation

SEEEE EESE EEEE EEEE]

X

related liver shape in the repository should be used to represent
the input shape. Second, one nonzero element of x shrinks to zero,
which means the related liver shape in the repository should not
be used to represent the input shape. Third, one zero element of
e changes to nonzero value. It means that a gross error, which
may be caused by mis-segmentation or erroneous detection, is
captured by SSC and the gross error should be added to the related
vertex. Fourth, one nonzero element of e shrinks to zero, indicating
the corresponding gross error in the former iteration should be
removed, and the new iteration verifies that no gross error is
related to that element of e.

Assuming there are s elements in I', calculating a new direction
that X, moves towards amounts to solving a linear system of
equations of size s x s. In one iteration, if there are n; shapes in
the repository used to represent the input shape, and the number
of non-zero elements in error e is 11, then the matrix that needs to
be inversed only contains n; + n, elements, and n; + n, = s. When
s is small, the computational complexity is not dominated by
matrix inversion operations, but by other matrix multiplications
which has a complexity near to O((n+ m) x s). However, the
matrix inversion contributes to most of the cost of interior point
methods, which has a complexity of O((n + m)*). In SSC, the solu-
tion is sparse, s will be much less than (n + m), which makes the
computational efficiency of homotopy will be dramatically higher
than that of interior point methods. Thus, the homotopy method
can significantly boost the computational efficiency compared
with traditional SSC.

2.5. Updating the modeling on the fly

Supposing there are n’ new training shapes added to the current

repository D, thus we get an expanded repository D = [DD']. We
denote the representation coefficient vector for the new repository

as X € R™™. It can be stacked with e to form a new vector
X' € R™"*™ We define A = [DI(m)] € R"™™"*™_ Thus, Eq. (3) is
updated as:

argmin F () = argmin {5y’ - A+ 2], } ®)
X’ X’
where X[, = [X]; + ¢lle]],-

Instead of re-computing the new optimal solution by decreas-
ing 4 from oo to 0 again, we employ a more efficient homotopy
strategy, which takes advantage of the optimal solution of Eq. (3)
that has been achieved before the arrival of new training shapes.
Supposing the optimization of Eq. 3 converged with a certain value
of /. and the corresponding optimal solution was x’. We set 4 in Eq.
(8) to a small fixed value, and define a new vector:

I
representation coefficient

200 400 600 800
i
(b) the solution path with decrease of A

1,000

Fig. 2. An illustration of the property of homotopy. In (a), an input shape is constructed by a sparse composition of shapes in the repository. The gross error is zero and the
optimization problem is simplified to just deal with x. The homotopy algorithm starts with a large value of 4. In (b), shows the change of the solution with decrease of .. White
dot lines are where break points appear. The amplitude of representation coefficients is shown in different colors. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)



180 G. Wang et al./ Medical Image Analysis 19 (2015) 176-186

X 1<j<n
X e R X =0 n<j<n+n 9)
X, N+ <j<n+n'+m

We consider the following problem:

argmin F,)(X") = argmin {%Hy’ —/N\x”Hg +AIX" ), +(1 - w)uTx”}

X"

(10)

where u = —jz — AT(AX" —y') and z is a vector that is defined as
sgn(X”) on the support set of X”. w is a factor in the range of 0 to
1. The subdifferential of F,(x") is:

OF ) (X") = AT(AX" — ') + 20|X"||; + (1 — w)u (11)

When w = 0, the optimal solution for Eq. (10) is obviously X".
Supposing the optimal solution for Eq. (8) is X”. when o changes
from O to 1, the problem of Eq. (10) will gradually deform to the
one of Eq. (8), and the optimal solution for Eq. (10) will gradually
deform from the warm-start vector X" to the desired solution X".
Similar to the situation in Eq. (3), the solution path of x” also fol-
lows a continuous, piece-wise-linear function of w. For a given
value of w, the optimal solution of x” is completely determined
by its support set and the sign sequence. The support set of x” will
change only at some break-points of w.

Compared with solving Eq. (8) directly by identifying a decreas-
ing sequence of 4, indirectly solving Eq. (10) by identifying an
increasing sequence of o will be more efficient in the case of shape
modeling on the fly, where n’, the number of new coming training
shapes, is often far smaller than n, the capacity of previous repos-
itory. At each iteration, homotopy method needs to update one ele-
ment of its support set. The support set of X” and that of x” usually
have many common elements, thus it needs far fewer iteration for
the optimal solution to deform from X” to X” (related to an increas-
ing sequence of ) than deform from zero to x” (related to a
decreasing sequence of 2). Since the shape representation problem
is sparse, the time consumed in each iteration is relatively low for
both of these two methods. As a result, it will be very fast to
achieve the new optimal solution by solving the problem of Eq.
(10) when new training shapes arrive.

In summary, our proposed framework aims to model complex
liver shapes with high accuracy and efficiency, and achieve effi-
cient shape modeling on the fly. On one hand, SSC can deal with
complex variation of liver shapes by overcoming the limitation of
parametric possibility distribution. It also explicitly models gross
errors in the input shape and captures mis-segmented regions
more effectively. One the other hand, we use a homotopy-based
method to solve the optimization problem in SSC at a fast speed.
It also allows liver shape modeling using large-scale training data
and high number of vertices, which will further improve the
accuracy. When new training shapes are added to the repository,
the homotopy method can update the optimal solution on the fly
in a fast speed, avoiding re-computing the solution from scratch.

3. Results
3.1. Experimental setting

In the experiments, we validated our algorithm in liver surgical
planning system and measured its accuracy and efficiency when
modeling liver shape priors. The adaptive focus deformable model
(AFDM) (Shen et al., 2001) was used to obtain one-to-one corre-
spondence of vertices on different meshes. All the experiments
were performed on a 2.67 GHz Workstation with 12 cores and
48G RAM, and the algorithms were in MATLAB implementation.
We compared the computational cost of LP, FISTA and homotopy

methods when they converged to the same accuracy of le-5,
and compared the accuracy of homotopy-based SSC with SSM
using Principle Component Analysis (PCA).

3.2. Evolution of SSC’s output based on homotopy method

Fig. 3 shows an example of the evolution of SSC’s output at dif-
ferent break points in homotopy method. The input liver shape
contained an over-segmented part near the heart, which could be
treated as gross error. As shown in the figure, at a high value of
J, the over-segmented part was almost excluded, but the error of
modeling was large. With the decrease of 4, several break points
appeared. At each break point, with the change of I', either one
element of the representation coefficient of training shapes or
one element of gross errors is updated. This led to the update of
SSC’s output and the improvement of accuracy.

3.3. Computational efficiency based on synthetic input shape

Assuming there are s non-zero elements in the optimized
solution of X’ in Eq. (3), we define non-sparsity index of the liver
repository with respect to the input liver shape as s. In order to
investigate the performance of homotopy method when the
non-spasity index varied, we employed synthesized input shapes
in the experiment at first. For a given value of s = n1 + n2, a syn-
thesized vector y’ could be constructed by a linear combination
of n1 randomly selected columns of matrix A, followed by adding
a gross error which had n2 non-zero elements. This synthesized
vector was converted to a shape, which was taken as the input
shape.

Fig. 4(a) shows the number of iterations needed by Homotpy
and FISTA when the non-spasity index varied in a large range.
The capacity of repository was 500 and vertex number was set as
800. The non-sparsity index ranged from 10 to 500. At each param-
eter set, we measured the average number of iterations of FISTA
and homotopy for 20 synthesized input vectors. It was shown that
for homotopy method, the number of iterations was nearly a piece-
wise linear function of non-sparsity index. In Fig. 4(a), when the
non-sparsity index was low, for example, less than 250, the num-
ber of iterations was equal to non-spasity index. This means when
the shape representation problem is sparse to a certain degree, the
number of iterations is equal to the sum between the number of
shapes in the repository that are used to represent the input shape
and the whole number of gross errors on the input shape. When
the non-sparsity index was higher, for example, larger than 300,
the number of iterations was increasingly larger than the non-
sparsity index, and the difference between them also rose with
the increase of non-sparsity index. In contrast, for FISTA, it was
shown by Fig. 4(a) that the number of iterations was not affected
by the non-sparsity index when the repository’s capacity and
number of vertices were fixed.

The corresponding runtime of these two methods are shown in
Fig. 4(b). The runtime of FISTA just slightly fluctuated around 4.0 s,
but homotopy had a large range of runtime, from nearly 0.1s to
10.7 s. When the non-sparsity index was larger than 350, homoto-
py obviously spent more time to solve SSC than FISTA, and with the
increase of non-sparsity index, the runtime of homotopy also
increased fast. However, when the problem was sparser (the
non-sparsity index was less than 350), homotopy had a great
advantage of computational efficiency over FISTA. The more
sparsely an input shape could be represented by a given repository,
the less runtime was needed by homotopy to solve SSC. Thus,
homotopy is more suitable to solve sparse problems related to
shape representation.
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Fig. 3. Evolution of SSC’s output based on homotopy method. The input shape contained an over-segmented part. Each picture shows the output of SSC at one break point of
homotopy. The outputs were compared with gold standard, and the distance errors were shown in different colors (repository capacity was 60, and vertex number was 800).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. The change of iteration number (a) and runtime (b) with the increase of non-sparsity index. (repository capacity was 500, and vertex number was 800).

3.4. Computational efficiency based on clinical input shape

In the following experiments, input liver shapes were obtained
from clinical CT data. We collected image data of 20 individuals. 7
of them were normal persons, and others had intrahepatic tumors.
The tumors were distributed in different parts of livers, such as in
the left lobe, in the middle bottom part of liver, or close to major
hepatic vessels. The tumors usually had lower gray levels than nor-
mal hepatic tissues, and some of them made the liver shape deform
to a large degree. The slice thickness of CT data was 1.25 mm.
Image resolution was 512 x 512, and pixel spacing was
0.8574 mmx0.8574 mm. To model liver shapes, a rough liver seg-
mentation based on simple region growing method was rapidly
performed firstly. The segmentation results were then converted
to meshes and registered to the reference shape in the repository.

To evaluate the efficiency and scalability of our method, we
need a large repository of training liver shapes, with many vertices
on each shape, which is necessary for modeling complex liver
shapes and details. In other words, the matrix D in Eq. (1) should
have both large number of rows and columns. Specifically, we set
the range of repository’s capacity to 1000 to 10,000 (i.e., number
of shapes), and the maximum vertex number to 2000, which
should be sufficiently large for evaluating the scalability of our
method. However, collecting such number of livers and manually
segmenting them to get training shapes may not be feasible at cur-
rent stage. In practice, training samples in the repository were syn-
thesized from clinical data of 100 individuals, whose livers were

manually segmented and converted to meshes. These shapes could
be taken as the corresponding gold standards of these livers. We
employed PCA to compute the parameter vector of these shapes’
distribution and then randomly sampled the parameter space to
generate a large number of training samples. Since SSC did not rely
on the distribution model of training shapes, when we focused on
the computational cost of different optimization algorithms, using
synthesized training samples would not have an effect on the mea-
surement of time consumptions.

The average runtimes for LP, FISTA and homotopy are shown in
Fig. 5. The results were based on the average performance on 20
cases for each algorithm. Firstly, we tested the performance of
these algorithms when the number of vertices was fixed and the
repository’s capacity changed. In Fig. 5(a), the number of vertices
was set as 800. It was shown that with the increase of the reposi-
tory’s capacity, the time consumed by FISTA and LP rose rapidly. In
contrast, the homotopy method had a relatively slow increase of
runtime with the rise of repository’s capacity. When the reposi-
tory’s capacity increased from 1000 to 10,000, homotopy method
had a runtime ranging from 1.43 s to 3.53 s, but the time consumed
by FISTA increased from 5.49s to 30.65s, and LP consumed
25.67 min to 96.60 min, which showed the great advantage of
homotopy when dealing with large-scale shape repository.

Fig. 5(b) shows the change of runtime for LP, FISTA and homot-
opy with the increase of vertex number. The capacity of repository
was fixed as 500. When the number of vertices was low, all of these
three algorithms had a low computational cost. It should be
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Fig. 5. The change of runtime with the increase of repository’s capacity and vertex number. In (a), the vertex number was fixed to 800, and repository’s capacity increased
from 1000 to 10,000. In (b), repository’s capacity was fixed to 500, vertex number increased from 200 to 2000. Note that the runtime of LP is in minute, as shown in the green
axis on right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

noticed that when the number of vertices was set as 200, the run-
time of homotopy was higher than that of FISTA, and it decreased
when the number of vertices increases to 400. This could be
explained by the property of homotopy shown by Fig. 4(b) as
discussed above: at a low value of vertex number, the length of
X' in Eq. (3) was also low, and the ratio between number of non-
zero elements in X’ and the length of X’ was relatively high, thus
the solution was actually not so sparse. As a result, homotopy
method would need more iterations to converge to the solution.

It was shown in Fig. 5(b) that when the vertex number became
greater, the computational cost of all these algorithms increased.
However, FISTA and LP had an obvious sharp rise of runtime with
the increase of vertex number, while the runtime of homotopy
method increased very slowly. When the number of vertices
increased from 200 to 2000, homotopy method had a runtime
ranging from 0.96 s to 4.38 s, but the time consumed by FISTA
increased from 0.34s to 40.69s, and LP consumed 0.38 min to
322.21 min. From Figs. 5(a) and (b), it can be shown that homotopy
method remains very high computational efficiency when reposi-
tory’s capacity and vertex number increase to a large scale. We fur-
ther measured the runtime of the three algorithms in the case
where the repository’s capacity was enlarged to 10,000 and the
vertex number was set as 2000, and the result showed that homot-
opy just cost about 11.29 s, while FISTA and LP cost 176.82 s and
387.36 min respectively. This means that in such a large-scale con-
dition, homotopy is about 2000 times faster than interior point
method.

3.5. The sensitivity of parameters and homotopy’s advantage in
parameter setting

The optimization problem in Eq. (1) has a constraint that the
error term |y’ — Dx — e||, should be less than a given number 7.
We define n* = 1/||y’|l,- The relative error between input shape
and SSC represented shape is ¢ = |y’ — Dx —e||,/||y¥'|,- Thus the
constraint in Eq. (1) is equal to the condition ¢ < #*. For a certain
value of error parameter #*, there exists a value of /(#*) that makes
Eqgs. (1) and (2) have the same solution. When SSC is employed for
liver shape modeling, one usually sets #* to a given value, and the
corresponding value of A(xn*) in Eq. (2) should also be found. For
many methods to solve Eq. (2), that value may be obtained by test-
ing a large range of possible values of / in its parameter space and
choosing the one that makes the constraint in Eq. (1) is satisfied.
However, this process is time consuming.

Compared with other methods to solve the L1-norm optimiza-
tion problem in SSC, homotopy has an advantage that it naturally
searches the desired value of A during its iterations. At the start
of homotopy method, the value of / is large, which means the opti-
mization problem favors the sparsity of x and e, and the corre-
sponding relative error ¢(2) is also large. With the increase of
iteration numbers, homotopy will regulate A to a lower value when
the algorithm finds a new break point, which favors the relative
error &(4) between the input shape and SSC represented shape,
and ¢(4) will also become lower. Thus homotopy can be used to
identify the 4 that corresponds to the given value of #*. To obtain
the desired (1), the algorithm computes the relative error &(1)
after getting each break point of /. If &(1) is larger than the target
error of 7, the algorithm continues to compute the next break
point. If ¢(1) is less than n* after kth iteration, the algorithm uses
linear interpolation to find the desired A(#*) which makes the rel-
ative error equal to #*.

- ek o

w\ _ (k=1) 5 (k=1)
) =2 +7€(/€) e )

-2 (12)

Fig. 6 shows an example of the function of ¢ versus log(1). The
vertex number was set as 800, and repository capacity was 100.
Fig. 6 plotted the value of log(/) and the corresponding value of rel-
ative error ¢ at the end of each iteration. Break points were denoted
as stars in that figure. In Fig. 6(a), the rightmost star denotes the
first iteration, and the leftmost star denotes the last iteration.
Fig. 6(b) is one part of Fig. 6(a) that was zoomed in. As an example,
we set #* to 1e—3. Point P, denotes the value of 1 and ¢ at the end
of kth iteration, where the relative error is less than 1e—3. Point
Py_; denotes the value of 2 and ¢ at the end of (k — 1)th iteration,
where the relative error is larger than 1e—3. As a byproduct of
homotopy, the target value of Ai(#*) can be determined by point
P, and P,_; using Eq. (12), as shown in Fig. 6(b). In addition, it
should be noticed that when 4 varied in the range of 0.001 to
1000, the relative error kept a low value that was less than 1e-5
as shown in Fig. 6(a). This means that the optimal solution have
a high accuracy when / decreased to less than 1000, and it not sen-
sitive to parameter value of / in a large range, which makes it gen-
eral for different input shapes in the same application of liver
shape modeling.

3.6. Computational efficiency of shape modeling on the fly

To update shape modeling on the fly, we gradually added new
training shapes to the repository. We compared efficiency of two
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Fig. 6. An example of the function of ¢ versus log(%). (b) is one part of (a), which is denoted as a rectangle in (a). Notice that the value of log(%) and ¢ after the first iteration are

denoted as the rightmost star in (a).

methods for obtaining the new optimal solution after the reposi-
tory’s expansion. The first method solved the optimal solution for
Eq. (10) with w deforming from 0 to 1, and it employed the optimal
solution obtained before the arrival of new training shapes. The
second method just re-computed the solution for Eq. (8), with a
starting vector of zero. The vertex number was set as 800. The
initial capacity of repository was 9000, and it was gradually
expanded to 10,000, by 100 each time. We employed liver shapes
of 20 individuals as testing data. In the repository’s ith expansion,
the capacity changed from 9000 + (i — 1) * 100 to 9000 + i = 100,
we used dt(i) to denote the time consumed by updating the
optimal solution. The accumulated time t(i) = t(0) + 3\ _,dt(t)
denotes the accumulation of runtime for all the i expansions,
including the time consumed by computing the optimal solution
for the initial shape repository, which is denoted as t(0).

The average updating time dt(i) and accumulated time ¢t(i) for
all the testing data are shown in Fig. 7. At the start, there were
9000 shapes in the repository, and the runtime of homotopy-based
SSC was t(0) = 3.3732 s. In the first expansion, 100 new training
shapes were added to the repository. For the first method
mentioned above, dt(1) = 0.7920 s, while for the second method,
dt(1) = 3.6677 s. This is shown by the leftmost points on the two
curves in Fig. 7(a). With the continuous increase of repository’s
capacity, dt(i) for the first method kept less than 0.8 s. In contrast,
dt(i) for the second method maintained higher than 3.6 s, which
showed that updating based on Eq. (10) was far more efficient than
re-computing the optimal solution for Eq. (8) in cases where new
training shapes arrived. The accumulated time t(i) is shown in
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Fig. 7(b), which more obviously showed the difference between
these two methods. After 10 expansions, the repository’s capacity
was expanded to 10,000, and the average accumulated time t(10)
for the first method was 10.8891 s, while for the second method,
t(10) = 41.8113s.

3.7. Evaluation of the accuracy for liver shape prior modeling

Fig. 8 shows the result of liver shape prior modeling using
homotopy-based SSC, which was compared with PCA shape prior.
The middle and rightmost column in Fig. 8 show a visualization
of errors of the modeling, and the errors were measured as the
shortest Euclidean surface distance from modeling result to gold
standards, which were acquired from manual segmentation
results. The red color shows under-segmented regions and blue
color shows over-segmented parts. The repository’s capacity was
set as 800 and the vertex number was set as 1500. In the first
row, the postcava led to an over-segmentation, and both SSC and
PCA excluded that region. It should be noticed that PCA shape prior
lost some local details at the corner of left liver lobe. However, SSC
shape prior successfully preserved these parts, which can be seen
from the visualized distance errors: the PCA shape prior had more
red regions than SSC shape prior. The input shape in the second
row had an over-segmentation in the heart region and an
under-segmentation in the liver’s inner side. These regions were
gross errors in the input liver shape. However, the output of PCA
did not effectively exclude the heart region and restore the inner
side accurately. In contrast, these gross errors were successfully
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Fig. 7. The averaged updating time (a) and accumulated time (b) with the repository’s capacity gradually expanding from 9000 to 10,000. Note that (b) is the integration

of (a).
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Fig. 8. Visualization of SSC shape prior and PCA shape prior. First and second row: shape modeling results of healthy cases. Third and fourth row: shape modeling results of

livers with tumors.

captured and excluded by SSC. The result showed that SSC over-
come the influence of the heart more effectively than PCA, and
SSC also had a better performance in restoring the under-
segmented parts in the input shape. The last two cases in Fig. 8
showed shape prior modeling results for patients with liver
tumors. In the third row, the patient had a tumor in the left liver
lobe, which was under-segmented in the initial shape mainly due
to its different gray scale than normal liver tissues. PCA shape prior
restored most parts of the tumor region, but it failed to reserve the
corner of the liver. However, SSC shape prior almost exactly
modeled the real shape of the liver. In the last row of Fig. 8, a tumor
appeared in the middle lower side of the liver, PCA shape prior
performed well in preserving the tumor region, but it lost some
local details. In contrast, SSC achieved more accurate results, with
local details being preserved well.

To evaluate the accuracy of our shape prior modeling method
quantitatively, we measured the dice similarity coefficient (DSC),
the average symmetric surface distance (ASD) and maximum
symmetric surface distance (MSD).

2 x TP

DSC*ZXTP—#—FN—&-FP (13)
where TP,FN,FP denote true positive, false negative and false
positive respectively. For two liver shapes, we use SO and S1 to rep-
resent the set of surface points on each shape respectively. sO is an
arbitrary point in S0, and s1 is an arbitrary point in S1. d(s0,S1) is
the shortest Euclidean distance between the point sO and the
surface S1.

1
ASD = ———— d(s0,S1) + d(s1,50 14
o st (0 + Soatss0) (14
MSD = max {maxd(sQSl),maxd(sl,SO)} (15)
s0eS0 s1es1

We measured the mean value and standard deviation of DSC,
ASD and MSD for the 20 individuals, and reported the accuracy
of shape priors based on PCA and SSC. Both PCA and SSC shape
priors were compared with gold standards. The results are shown
in Table 1. PCA shape priors had a good DSC and ASD result, but it
had a high MSD value (the average MSD was more than 10 mm),
which indicated that some local parts of the liver was not well pre-
served by PCA. In contrast, the SSC shape priors had an obviously
higher DSC, and far lower ASD and MSD (the average MSD was less
than 4 mm). It is shown that SSC can model liver shape priors quite
accurately.

Table 1
Quantitative evaluation of liver shape prior modeling based on PCA and SSC. We
reported the mean values and standard deviations of dice similarity coefficient (DSC),
average symmetric surface distance (ASD), and maximum symmetric surface distance
(MSD).

DSC (%) ASD (mm) MSD (mm)
PCA 88.27 £7.52 2.28+1.34 10.36 +4.82
SSC 94.31£3.04 1.12 £ 0.69 3.65+ 1.40
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4. Discussion

The experiments show the following advantages of homotopy-
based SSC for shape prior modeling in liver surgical planning
system.

1. The homotopy-based SSC can achieve patient-adaptive
liver shape priors effectively. First, liver shapes have very
complex variations, but SSC is able to handle them by over-
coming the limitation of parametric possibility distribution
used in many traditional methods. Second, the challenges
in liver segmentation make the input shape easily contain
over-segmented regions adjacent to other organs such as
the heart, or under-segmented regions. Since our proposed
method explicitly models gross errors, it can capture them
and be robust to mis-segmented regions. In addition, it has
the ability to preserve local details, especially some corners
and inner parts of liver shapes, which makes the shape
prior be more patient-adaptive.

2. Compared with traditional SSC, the proposed homotopy-
based SSC achieves high efficiency by taking advantage of
two sparsity observations in liver shape modeling. First,
the representation coefficient vector x for shapes in the
repository is sparse, which means the input liver shape
can be approximately represented by a linear combination
of only a very small subset of the repository. Second, the
gross error e that we explicitly model is sparse, which
means the gross errors related to mis-segmentations may
be large but also relatively sparse compared with the whole
liver shape. Since the computational efficiency of homoto-
py is proportional to the sparsity of a problem, these pros-
perities make homotopy more suitable to deal with liver
shape representation.

3. Homotopy-based SSC is promising for highly accurate and
efficient liver shape modeling. Homotopy method speeds
up the optimization process in SSC dramatically compared
with traditional algorithms, and the high computational
efficiency makes it possible to model accurate liver shape
priors in real-time clinical environment. In addition, livers’
surfaces have many corners and uneven parts, representing
details of which needs a relatively high number of vertices,
and some liver patterns are rare, which makes the reposi-
tory should contain as many kinds of liver shapes as possi-
ble. Using a higher number of vertices and larger scale of
training data will help better modeling local details of clin-
ical liver. The related large-scale computation can be com-
pensated by low runtime of homotopy, which increases
very slowly when the scale of training shapes and number
of vertices rise to a large degree.

4, Homotopy naturally searches the appropriate parameter
set during its iterations, and further improves the computa-
tional efficiency compared to other methods which find the
appropriate parameter set by an extra independent pro-
cess. In addition, the proposed model is not sensitive to
parameter set of /. It allows users to set its value in a large
range without obvious effect on accuracy of the optimal
solution.

5. To update the shape modeling on the fly, we change the
strategy of homotopy and take advantage of the optimal
solution obtained before the arrival of new training shapes.
It avoids re-computing the optimal solution from scratch,
and just needs few iterations to deform to the new solution
when the problem is sparse, which is suitable for SSC
shape modeling. This method significantly decreases the
solution’s updating time when new training shapes arrive

gradually. Thus, it can be used for modeling of liver
shapes on the fly, which is more applicable in clinical
environment since training shapes are usually not obtained
in one batch.

5. Conclusion

In this paper, we introduced a efficient homotopy-based SSC to
model liver shape priors in liver surgical planning system. It
addresses three important problems in patient-specific liver shape
modeling: (1) obtain accurate shape priors, (2) be scalable and
remain high efficiency when dealing with large-scale training data,
and (3) achieve the updated optimal solution on the fly when new
training shapes arrive gradually. This method represents an input
shape by an optimized sparse combination of shapes in the repos-
itory and continuously transforms the optimization problem into a
series of simplified problems whose solution is fast to compute.
Experiments showed that the proposed method had a high perfor-
mance in dealing with complex liver shape variations, excluding
gross errors and preserving local details on the input shape. Its run-
time increased very slowly with the rise of the scale of training
data and number of vertices. In conditions where the repository’s
capacity was very large and the number of vertices was very high,
the new method showed a great advantage of quickly achieving
accurate liver shape priors. With more training shapes being added
gradually, homotopy can update the optimal solution of SSC on the
fly, without re-computing the optimal solution from scratch. When
the computational efficiency is boosted, SSC becomes more prom-
ising to be smoothly applied in clinical environments, with its fast
speed, high accuracy and scalability. It should be noticed that the
new optimization method for SSC is general and it can benefit
other applications as well.
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