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Abstract—The registration of ultrasound (US) and CT plays a vital 
role in clinical diagnosis and image-guided intervention. This 
research proposes a novel registration method combined with the 
electromagnetic navigation system for cardiac intervention. After 
a landmark-based method is carried out to get an initial 
registration, a 2D slice having the maximum similarity with the US 
image is generated from the 3D CT model. Finally, the SURF-
based algorithm is used to register the 2D slice with the US image. 
The innovation lies in the integration of the intensity information 
and feature to register preoperative CT volume model with intra-
operative US image in real time. Our method is validated by 
phantom and clinic experiments. The phantom experiment 
achieved an average FRE and TRE of 0.71±0.10mm and 
0.96±0.17mm. 
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I. INTRODUCTION 

Thoracic aortic stent-grafts have been approved for the 
treatment of aneurysms in the thoracic descending aorta in recent 
years [1]. However, many patients cannot undergo the surgery 
due to advanced age, or severe comorbidities. Therefore, 
minimally invasive surgery based on surgical navigation is a 
better alternative to bring patients less pain and faster recovery 
without the need for sternotomy. The electromagnetic 
navigation system can track the surgical instruments in real-time 
and provide the surgeon with precise position and orientation of 
the instruments inside patient’s body.  

To improve the performance of surgical navigation, some 
researchers have focused on the work using intra-operative 
imaging such as computed tomography (CT), fluoroscopy, 
magnetic resonance imaging (MRI), and 3D ultrasound (US). 
However, these modalities have some disadvantages to limit 
their applications. In our research, 2D ultrasound is used to 
provide the intra-operative guidance in real time due to its 
security, low cost and ease to use. Image registration is vital to 
the surgical navigation. The fusion of the preoperative 3D CT 
image and the intra-operative 2D US image integrates the high 
quality and rich spatial information of the 3D CT with the real-
time imaging ability of 2D US, providing the surgeon with 
complementary information acquired in the two different 
modalities and more precise guidance in the operation. Recently, 
most of the researches on CT/US registration are focus on the 
liver [2]. In this paper, we address that on the cardiac 

intervention. Considering the particular structures, we select the 
aortic valve, the outline of the atrium and ventricle etc. in the 
registration procedure. 

There are two major groups of image registration methods 
for CT/US [3-5, 16-19]. One is the intensity-based method. Xu 
et al. [6] combined the mutual information (MI) and the normal 
vector information (NVI) into a single similarity measure to 
align the simulated US image from CT with the US image of the 
liver in radio frequency ablation. Wein et al. [7] registered US 
images to 3D CT by maximizing the cross-correlation. Another 
one is the feature-based method. Luo et al. [8] segmented the 
aortic root contour from short axis US image, then the points of 
contours were selected manually to register with the 3D CT 
aortic surface model. Terry et al. [9] extracted the feature points 
from aortic valve in the spatial registration after the temporal 
synchronization of the beating heart. However, they still have 
disadvantages respectively [10], the intensity-based method 
performs better for multi-modality image registration but is far 
more computationally intensive than the feature-based method, 
while the feature-based method has greater reliability but can be 
hard to distinguish between noise and edges. In this paper, we 
present a hybrid approach which encouraged by both merits 
from intensity and feature based methods to achieve more robust 
and accurate performance. 

II. METHOD 

A. GPU Accelerated Cardiac Modeling 

In order to construct a 3D cardiac volume model for the 
preoperative planning and intra-operative navigation, patient’s 
preoperative CT images are rendered by a raycasting algorithm 
[11], which implements the GPU acceleration with CUDA 
(Compute Unified Device Architecture) programming. 

B. Preoperative Planning 

According to the patient’s condition, surgeons can determine 
the target position of the stent-graft and the path of surgical 
instruments on the cardiac volume model. The target position to 
deploy can be considered as a plane defined by a set of points 
distributed around the aneurysm. 

 



C. Probe Calibration of US 

In order to fuse the preoperative CT image with the intra-
operative US image to assist the navigation, we apply a freehand 
method to calibrate the probe [12]. A 6-DOF sensor is attached 
to the probe and traced by the electromagnetic tracker. When 
scanning a customized phantom (Fig. 1) by the probe, a US 
image with high-intensity landmarks is acquired, then the point 
coordinate in the US image (1 )i

USP i n  can be obtained, 
where n is the number of acquired keypoints. The point 
coordinate in the real world i

worldP determined by electromagnetic 
tracker are computed according to the coordinate of high-
intensity landmarks in the US image and the coordinate of 
reference points in the real world. A point in US image 
transformed to the world coordinate can be represented by: 

 i i
world world sensor sensor US USP T T P     (1) 

The world sensorT   is the transform matrix from the tracking 
device coordinate to the world coordinate, and is measured by 
the electromagnetic tracker. The sensor UST  is the calibration 
matrix from the US image coordinate to the tracking device 
coordinate, and is computed by: 
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      (2) 

 
Figure 1.  N-phantom for calibration 

D. Registration 

In order to register and fuse the intra-operative US image 
with the preoperative CT model, a spatial transform from any 
point in US image coordinate system USP , to the corresponding 

point in 3D CT coordinate system CTP , should be determined. 

The spatial transform CT UST  is made up of three components as 
follows: 

 CT CT world world sensor sensor US USP T T T P        (3) 

As the transform sensor UST    is calculated in the calibration of 
US probe and fixed once the 6-DOF sensor is attached to the 
probe, and the world sensorT   is measured in real time, the purpose 

of registration is to calculate and rectify the CT worldT  , which is 
from the world coordinate to the preoperative CT coordinate.  

 

Figure 2.  Workflow of our registration algorithm 

According to the workflow in our system shown in Fig. 2, 
the registration in our research consists of two main steps, 
namely, initial registration and intra-operative registration. The 
initial registration is a rigid landmark-based transformation to 
get an initial transform matrix. In the intra-operative non-rigid 
registration, an intensity-based method is used to search for the 
CT slice having the maximum similarity with the US image, then 
a feature-based method is used to register this slice with the 
corresponding US image, and the transform is updated further. 

1) Initial registration 
We perform a landmark-based registration to gain an initial 

transform CT worldT  . Several (6 in our research) fiducial 
landmarks within the target area on the phantom are selected. 
After reconstructing the preoperative 3D CT image of the 
phantom, these landmarks are identified in the image. Then a 
rigid transform is computed by minimizing the mean-squared 
distance between corresponding landmarks in the preoperative 
image and phantom.  

 

Figure 3.  Fiducial landmarks selected for the initial registration 



2) Intensity orientation-based registration 
After initial registration, the intra-operative US image is 

registered and fused with the preoperative CT image 
approximately.  Then a 2D slice of CT is extracted from 3D CT 
volume using the method of 3D cubic interpolation. The 2D slice 
has the same position, orientation and size with the US image.  

The information of intensity orientation can be depicted by 
normal vector information (NVI) or gradient [13]. However, in 
2D-2D registration based on NVI, some orientation information 
is ignored. Therefore, we propose a novel method to depict more 
complete intensity orientation information of a medical image. 
The intensity orientation of a pixel x  in an image can be 
described by an eight-dimensional vector, each component of 
the vector represents the intensity difference between x  and 
each of the eight-neighborhood pixels of x . The vector can be 
described as following: 

   1 2 8, , ,
T

jv x d d d d    


  (4) 

where jd  is the intensity difference between x  and its -thj  

neighboring pixel jx . Considering that the intensity distribution 

in multi-modality medical images can be opposite, jd  is defined 

as: 

     2

 j jd I x I x    (5) 

where    I x  is the intensity of the pixel x ,  jI x  is the 

intensity of its -thj  neighboring pixel jx . In order to eliminate 

the influence of outliers, the intensity orientation vector  v x


  

needs to be normalized. 

For two images A  and B , Ax  in image A and Bx in image 
B  are a pair of corresponding pixels. The similarity metric of 

Ax   and Bx  is defined as: 

      ,
T

A B A BMetric x x v x v x  
  (6) 

where the value of similarity metric is restrict to  0,1 . Ideally, 

if the two pixels share the same intensity orientation, the value 
of similarity metric will be 1. In our registration, the intra-
operative US image is treated as the reference image R  , and the 
3D CT volume is treated as the floating image F . The goal is to 
search for the optimal transform optT  to maximize the similarity 

of R , and the CT slice generated from the transformed floating 
image  T F  , as follows: 
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where N  is the number of the corresponding pixels  ix  in the 

common region of R  and  T F . A method of gradient descent 

is used to solve the optimization problem. The initial registration 

can provide an appropriate starting point to the optimization 
problem, so that the procedure converges more rapidly and 
avoids getting a local optimum. In each iteration, the transform 
T  is updated and adopted to transform 3D CT volume, then a 
new 2D CT slice is generated for the next iteration. The updating 
is performed until the optimization algorithm converges, then 
the transform CT worldT   is rectified to be 1( )opt CT worldT T T

  . 

3) Feature-based registration 
While using the rectified transformation T    to transform the 

3D CT volume, the 2D CT slice generated will have the 
maximum similarity with the US image. Nevertheless, due to the 
lack of spatial information in intensity orientation-based 
registration, a feature-based method should be used to register 
the 2D CT slice with the US image further.  

In our research, the method of Speeded Up Robust Features 
(SURF) is adopted [14]. It’s partly inspired by the scale-
invariant feature transform (SIFT) descriptor, but it’s several 
times faster than SIFT and is more robust in image registration. 
SURF uses a blob detector based on the Hessian matrix to find 
points of interest. The determinant of the Hessian matrix is used 
as a measure of local change around the point and points are 
chosen where this determinant is maximal. Given a point 

 ,p x y  in an image I  , the Hessian matrix  ,H p   at point 

p


  and scale , is: 
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where  ,xxL p    is the convolution of the Gaussian second 

order derivative  
2

2
I

x



  with the image I  in point p


 , and 

similarly for  ,xyL p   and  ,yyL p  . To describe the 

descriptor around the point, a square region centered on the 
interest point is extracted. The interest region is split into smaller 
square sub-regions, and for each one, the Haar wavelet responses 
are extracted at sample points with regular space. In order to 
offer more robustness for deformations, noise and translation, 
the responses are weighted with a Gaussian. Then the descriptors 
are formed by summing up the wavelet responses over each sub-
region. 

Before the registration, the US image and the CT slice should 
be preprocessed to reduce noise. And regions of interest are 
extracted to reduce the computational complexity. Edges in the 
two images are detected using the canny detector. A suitable 
number of SURF points are defined by tuning the threshold of 
SURF detector. The threshold for the US image should be 
smaller to acquire more feature points due to its low imaging 
quality. By comparing the descriptors of points obtained from 
the two images, matching pairs are found. In order to eliminate 
the effect of outliers, we perform the method of random sample 
consensus (RANSAC) [15]. We scatter the whole matching pairs 
into some subsets randomly, calculate a transform on each subset, 
and merge these solutions into a weighted average as the final 
solution. Finally, the transform from the world coordinate 



system to the CT image coordinate is rectified to be T T    , 
where T   is the solution of the SURF-based registration. 

III. RESULT 

A.  Data and Experimental Setup 

The CT datasets of three healthy volunteers and two 
phantoms are acquired using a triphasic helical double-source 
computed tomography scanner (Cancer Hospital of Fudan 
University) with imaging parameters: slice thickness = 1.0mm, 
image resolution = 512 × 512, and spacing = 0.708984mm × 
0.708984mm × 1mm. The US image with resolution = 720 × 576 
is obtained from a GE LOGIQ P5 ultrasonic machine with a 
calibrated probe. The real-time US images are imported into our 
system with an image capture card. An electromagnetic tracking 
device (Aurora, Northern Digital Inc., Canada) is employed to 
track the pointer, the US probe and intervention instruments.  

We developed the navigation system in Eclipse IDE using 
Python 2.7, and made full use of the classes from open-source 
visualization toolkits and libraries: VTK 6.3 (www.vtk.org), 
Atamai, CUDA 4.0 and OpenCV 2.4.9 (opencv.org).  

B. Error 

1) Fiducial Registration Error (FRE) 
The FRE is defined as the root mean square of the difference 

between the fiducial landmarks selected on the 3D volume 
model and the corresponding positions on the phantom 
transformed by the CT worldT  .  

2) Target Registration Error (TRE) 
The TRE is the total registration error including the 

calibration error of US probe, the offset of the pointer and so on. 
It’s defined as the root mean square of the difference between 
the target positions determined in preoperative planning and the 
corresponding positions on the phantom transformed by the

CT worldT  . 

C. Phantom Experiment 

We customized a phantom (Fig. 4(a)) to present the cardiac 
structure, which was made by transparent plastic glass. The 
small cube in the phantom simulates the heart chamber, and the 
bend PVC pipeline simulates the descending aorta.  

The preoperative CT image of the phantom was imported 
into our navigation system and reconstructed into a 3D model. 
Preoperative planning was performed on the model to determine 
the target position of stent-graft. The corners of the model were 
marked as the fiducial landmarks in the initial registration and 
compute the FRE. Some points on the aorta were selected as 
target points to compute TRE. After the initial registration and 
probe calibration were performed, the real-time US image was 
integrated into the system and fused with the 3D model 
approximately (Fig. 4(b)). When the tracked catheter was 
inserted into the bend pipeline, the system can visualize the 
model of stent-graft embedded in the front of the catheter and 
show the distance between the stent-graft and the target plane. 
Then the intensity orientation-based and SURF-based method 
were performed to fuse the model and US image better(Fig. 4(c)). 

 
(a) 

 
(b) (c)

Figure 4.  The phantom experiment. (a) The experimental scene. (b) The 
fusion of the US image and 3D CT model after the initial registration. (c) The 

fusion images after the final registration. 

The results of the phantom experiment are shown in Table I, 
demonstrating the accuracy and robustness of the registration. 
The average and standard deviation of root mean square of the 
residual distances of the fiducial and target points are listed. In 
order to validate the performance of the intensity orientation-
based method, the final results are divided into two groups: the 
Final 1 without the step of intensity orientation-based 
registration, and the Final 2 within. The initial landmark-based 
registration achieves an average FRE and TRE of 0.75mm and 
1.48mm. The TRE results are improved to an average of 0.96mm 
after using our hybrid method. In some cases, the FRE are 
increased slightly, due to the error introduced from the US probe 
calibration. In addition, the results of the Final 2 is better than 
those of the Final 1, which demonstrates that the intensity 
orientation-based method plays an important role in the whole 
registration. By contrasting with the results of other methods, 
our method is more accurate and robust. 

TABLE I.  FRE (MM) AND TRE (MM) OF REGISTRATION. (FINAL 1 IS THE 
RESULT WITHOUT THE INTENSITY ORIENTATION-BASED REGISTRATION, WHILE 

FINAL 2 WITHIN) 

 Initial Final 1 Final 2 

 FRE TRE FRE TRE FRE TRE 

1 0.82 1.45 0.77 1.12 0.68 0.91 

2 0.77 1.42 0.75 1.05 0.70 0.87 

3 0.69 1.64 1.19 1.35 0.91 1.29 

4 0.83 1.50 0.80 1.03 0.65 0.88 

5 0.65 1.39 0.75 0.98 0.62 0.85 

 
0.75 

±0.07 
1.48 

±0.09 
0.85 

±0.17 
1.11 

±0.13 
0.71 

±0.10 
0.96 

±0.17 



D. Clinical Experiment 

The CT datasets of three healthy volunteers were obtained to 
further evaluate the performance of our system. The short axis 
US images of apical four-cavity were chosen to register, where 
the structure of the atrium, ventricle, and mitral valve is clearly 
visible. 

Fig. 5(a) shows the fusion of the 3D volume model and the 
US image after running our registration algorithm. In order to 
show more details, the US image and the corresponding 2D slice 
from the 3D volume model are shown in Fig. 5(b). It can be seen 
that the corresponding structures and features of the two images 
are well aligned.  

   

(a) (b) 

Figure 5.  The clinical experiment. (a) The fusion images. (b) The details of 
the fusion (1 and 2: two vessels). 

IV. CONCLUSION 

In this paper, we proposed a novel registration method 
combining the intensity information and feature of images. To 
our knowledge, the traditional approaches of multi-modality 
registration usually need extensive manual effort to extract 
feature points or contours. Those manual steps can be avoided 
using our algorithm. On the other hand, our method achieves a 
trade-off between the accuracy, robustness and computation 
complexity. The method of SURF is more robust against 
different image transformations than SIFT, and its combination 
with the intensity-based method can improve the accuracy of 
registration. In addition, the initial registration provides an 
appropriate starting point to the optimization problem of the 
intra-operative registration, so that the computation complexity 
can be reduced significantly. Experiments demonstrated that our 
method is acceptable in medical diagnosis and thoracic aortic 
stent-graft deployment. 
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