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Myocardium Segmentation From DE MRI Using
Multicomponent Gaussian Mixture Model and
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Abstract—Objective: In this paper, we propose a fully
automatic framework for myocardium segmentation of
delayed-enhancement (DE) MRI images without relying on
prior patient-specific information. Methods: We employ
a multicomponent Gaussian mixture model to deal with
the intensity heterogeneity of myocardium caused by the
infarcts. To differentiate the myocardium from other tissues
with similar intensities, while at the same time maintain
spatial continuity, we introduce a coupled level set (CLS)
to regularize the posterior probability. The CLS, as a spatial
regularization, can be adapted to the image characteristics
dynamically. We also introduce an image intensity gradient
based term into the CLS, adding an extra force to the
posterior probability based framework, to improve the ac-
curacy of myocardium boundary delineation. The prebuilt
atlases are propagated to the target image to initialize the
framework. Results: The proposed method was tested on
datasets of 22 clinical cases, and achieved Dice similarity
coefficients of 87.43 ± 5.62% (endocardium), 90.53 ±
3.20% (epicardium) and 73.58 ± 5.58% (myocardium),
which have outperformed three variants of the classic
segmentation methods. Conclusion: The results can
provide a benchmark for the myocardial segmentation in
the literature. Significance: DE MRI provides an important
tool to assess the viability of myocardium. The accurate
segmentation of myocardium, which is a prerequisite for
further quantitative analysis of myocardial infarction (MI)
region, can provide important support for the diagnosis
and treatment management for MI patients.

Index Terms—Coupled level set, delayed-enhancement
MRI, multi-component Gaussian mixture model, my-
ocardium segmentation.
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I. INTRODUCTION

A SSESSMENT of myocardial viability is essential in the di-
agnosis and treatment management for patients suffering

from myocardial infarction (MI). Delayed-enhancement (DE)
MRI provides an important tool for MI assessment, because of
its capability to directly visualize infarcts, and the established
effectiveness in determining the presence, location, and extent
of MI. In DE MRI, the infarcted myocardium is enhanced due to
the delayed washout of contrast agent compared to the healthy
myocardium.

Once the myocardium has been delineated in DE MRI im-
ages, the MI regions can be differentiated from healthy tissue
using a method based on appropriate intensity threshold. For
example, with manually annotated remote healthy tissue as ref-
erence, the mean (μ) and standard deviation (σ) of the intensity
of the reference region can be calculated, and the threshold can
be determined as μ + n�σ, where n is an empirically determined
integer [1]–[3]. Alternatively, the full width at half-maximum
(FWHM) of the MI region can be employed as a threshold-
ing criterion [1], [3]. Several classification techniques have also
been introduced into the segmentation of MI regions, such as
the k-means [4], fuzzy c-means [5], [6], mixture model, includ-
ing the Rayleigh-Gaussian mixture model [7], [8], Gaussian
mixture model [5], [9] and Rician-Gaussian mixture model [9].
Fast level set algorithms [10], region competition [7], water-
shed segmentation [8], [9], and region growing [11], have also
been employed to address this problem. However, before the MI
can be identified and analyzed quantitatively the myocardium
must first be segmented. Currently, this is often performed man-
ually or semi-automatically in clinical practice. Since manual
delineation can suffer from intra- and inter-observer variation
and be time consuming, the automated segmentation becomes
increasingly desired.

Developing fully automated segmentation from cardiac im-
ages is generally arduous due to the large shape variability of
heart, indistinct boundaries, and the low quality of images due to
motion artifacts [12], [13]. In addition, the automatic segmenta-
tion from cardiac DE MRI must tackle another three challenges
coming from the contrast enhancement:

1) The intensity of the myocardium is heterogeneous due to
the existence of the enhanced infarct regions. This chal-
lenges many of the automatic myocardium segmentation
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methods that can work well in other MRI sequences,
such as the cine MRI, where uniformity of the intensity
distribution is often assumed [14], [15].

2) The enhancement patterns are complex, with the location
and size of infarcts varying markedly across different
patients. Microvascular obstruction also occurs in many
patients, where part of the infarct regions appears dark
due to the lack of contrast agent uptake. It is, therefore,
difficult to make any geometric assumption of the infarcts.

3) The intensity range of the myocardium fully overlaps that
of its surroundings, e.g. the healthy myocardium has an
intensity range similar to that of the liver and lung, and
the enhanced myocardial infarct has a similar range to
that of the blood pool.

To the best of our knowledge, little work has so far focused on
the automatic or semi-automatic segmentation of myocardium
from DE MRI. Rajchl et al. [16] proposed to extract myocardial
infarcts directly in a semi-automated manner, and the healthy
myocardium was also segmented implicitly. This method limits
the use of the prior knowledge about myocardium (contains the
healthy and infarcted regions) to minimize the need for human
supervision. Many of the automatic methods use the myocardial
segmentation of cine MRI acquired in the same session as a
priori knowledge, since cine MRI is widely used in clinics. The
prior segmentation in cine MRI is first propagated to the DE
images using image registration techniques and more accurate
segmentation can be obtained by applying an additional global
affine transformation [17] or a shift window [18] to the 2D
slices. Also a 3D mesh can be built from the propagated prior
segmentation and then deformed towards the target myocardial
contours. Different models have been proposed, based on the
intensity characteristics of DE images and the myocardium
shape knowledge, to detect the myocardial contours. Ciofolo
et al. [19] proposed a 2D geometrical template which modeled
the myocardium as a closed ribbon structure with an imaginary
centerline and variable width. They divided the myocardium
into four quadrants and treated those containing potential scars
differently while deforming the 2D template. Wei et al. [20]
used a 1D profile template to model the intensity patterns
along a radial ray from the left ventricle (LV) center to beyond
the epicardium. The paired endocardial and epicardial edge
points are detected along the radial ray. However, these existing
models are not sufficiently flexible to adapt to the complex
enhancement patterns in MI patients. The work of [16] and
[18] mainly targeted the infarction region and no quantitative
evaluation of the myocardium segmentation was provided.
Though many automatic segmentation methods from cine MRI
have been established, the use of cine MRI as a prior makes the
whole segmentation procedure tedious and time consuming.
The segmentation errors in cine MRI can be propagated to
the segmentation of DE MRI. Also, an accurate registration
between the two sequences can be challenging. Therefore,
human supervision is often required in several stages.

In this paper, we focus on the fully automatic myocardium
segmentation from DE MRI. We explore the possibility of accu-
rately delineating the myocardium from DE MRI without addi-
tional prior information of the specific subject, such as b-SSFP

cine MRI. We make full use of the information from a single
sequence and reduce the dependence on the initial contours, and
thus simplify the whole segmentation procedure. We employ the
multi-component Gaussian mixture (MCGM) model [21] to deal
with the intensity heterogeneity of myocardium. The traditional
Gaussian mixture model (GMM) assumes the intensity of each
anatomical structure to be Gaussian distributed, which in many
situations cannot be justified. On the other hand, the MCGM
models the intensity distribution of a structure, e.g. myocardium,
with multiple Gaussian functions, i.e. multiple components. To
estimate the model parameters, the expectation maximization
(EM) algorithm is employed and an atlas prebuilt from healthy
volunteers is propagated to initialize the parameters.

To maintain the spatial continuity and a realistic myocardial
shape, a spatial regularization is required. A pre-constructed
atlas can be used to propagate constraints to the target image
[21], [22]. However, accurate propagation of such constraints
via atlases is difficult, and an improper spatial constraint can
limit the flexibility of contour evolution, leading to inaccurate
segmentation results. To ameliorate this problem, we introduce
the coupled level set (CLS) to serve as the spatial regulariza-
tion, which can be iteratively adapted to the image characteris-
tics while the propagated atlas is usually fixed throughout the
segmentation process. The active contour method has been suc-
cessfully used in image segmentation, and the extension to the
multiphase segmentation has also been studied [23], [24]. Zeng
et al. [25] introduced the idea of coupled-surfaces propagation
during cortical segmentation, reflecting its elongated shape and
approximately constant thickness. This idea was later extended
to myocardial segmentation in short axis images for the coupled
propagation of two cardiac contours [26]. Many myocardial seg-
mentation efforts were based on the CLS using different image
information, or integrating different prior knowledge [27]. In
the work related to bladder wall segmentation, Han et al. [28]
introduced the CLS into the EM framework, where the level set
energy function was constructed based on the posterior proba-
bility updated in the EM iteration. Inspired by these works, the
CLS and EM frameworks are adopted in our myocardium seg-
mentation. We introduce the CLS as a shape regularization step.
The CLS evolution is not only based on the posterior probability
estimated in the EM estimation step, but also on the intensity
gradient information computed from the target image.

The rest of the paper is organized as follows: the proposed
method is described in Section II; the experiments and results
are presented in Section III; conclusions are given in Section IV.

II. METHOD

This work attempts to classify pixels of DE MRI images into
three spatially coherent classes: the myocardium, LV and back-
ground. First, an atlas is registered to the target image [29],
[30], to initialize the prior class probabilities for each image
pixel. Image intensity distribution of the three class are mod-
eled by MCGM model (described in Section II-A), and the
model parameters are estimated using the EM algorithm (de-
scribed in Section II-B). The MCGM model only accounts for
the intensity information, and all the pixels are assumed to be
mutually independent. We therefore introduce a CLS to impose
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Fig. 1. Pseudo code of the proposed MCEM-CLS framework.

Fig. 2. Flowchart of the proposed myocardium segmentation for
cardiac DE-MRI.

Fig. 3. DE MRI images and corresponding intensity distribution.
(a) one example of DE MRI slice; (b) the intensity histogram of the
image in (a); (c) the intensity histogram of myocardium and blood pool.

a spatial regularization on the prior probabilities (described in
Section II-C). In the CLS, two contours, respectively represent-
ing the epicardial and endocardial surfaces, are evolved to fit
the image under the influence of the coupling force, the poste-
rior probability force, and the image intensity force. The CLS
regularization step takes place after the posterior class proba-
bility is re-calculated with the updated MCGM parameters, and
then forms the new prior probabilities to trigger a new iteration.
Fig. 1 provides the pseudo code of the proposed segmentation
framework, and Fig. 2 illustrates the flowchart.

A. Multi-Component Gaussian Mixture Model

The GMM method assumes that each target class should have
a unique intensity with added noise that can be modeled by a
Gaussian distribution. However, in the context of medical imag-
ing, the images and target objects usually do not follow such a
simple assumption, and there is no simple one-to-one correspon-
dence between the target classes and the Gaussian distributions.
In the segmentation task described in this paper, one class can
indeed be modeled by a combination of several Gaussian distri-
butions. For example, the myocardium contains healthy tissue
as well as enhanced infarcts. Similarly, pixels from different
classes may have similar intensities: the intensity of infarcts and
blood pool can be very similar, and it is difficult to differentiate
them based merely on intensity. From the perspective of target
classes, one can adopt the MCGM model [21], which allows one
target class to contain multiple components of Gaussian distribu-
tions. To correctly classify the pixels with similar intensities into
different target classes, we introduce the spatially variant class
prior probabilities and impose myocardium spatial information
using the CLS which is described in detail in Section II-C.

With the MCGM model, we classify all the pixels into three
classes, Λ = {LLV , Lmyo , Lbg}, namely the LV, myocardium
and background. The LV class contains one component; the my-
ocardium contains two components, respectively for the healthy
and infarcted tissues; the background contains three compo-
nents: lung, liver and right ventricle (RV). We denote the set
of all the components as X . The intensity distribution of each
component is modeled as a Gaussian distribution. Let li and zi

(i = 1, 2, . . . , N , where N is the total number of pixels) denote
the class and the component to which pixel i belongs, respec-
tively. With the assumption that the observed intensity yi is
independent of li conditionally to zi , the MCGM model can be
written as follows:

f (yi |Φ,Π) =
∑

L∈Λ

p (li = L)
∑

C∈X

p(zi = C|li

= L)φ (yi |μC , σC ) , (1)

where φ(yi |μC , σC ) is the Gaussian distribution with mean
μC and standard variance σC ; p(li = L) is the prior proba-
bility of pixel i belonging to the class L, which varies from
pixel to pixel. For simplicity, we denote φiC = φ(yi |μC , σC )
and πiL = p(li = L). We denote piC = p(zi = C|yi) as the
posterior probability of pixel i belonging to component C and
piL =

∑
C∈L piC as the posterior probability of pixel i belong-

ing to class L. In the case that pixel i belongs to class L, the
mixture proportion of the component C ∈ L is represented by
δLC , i.e.

p (zi = C|li = L) =
{

δLC , C ∈ L
0, C /∈ L

, (2)

with the constraint
∑

C∈L δLC = 1.
Let Φ be the parameter set of Gaussian distributions

(μC , σC , C ∈ X) and the mixture proportions of different com-
ponents (δLC , L ∈ Λ, C ∈ L); Π represents the parameters of
prior probabilities of all the classes and pixels (πiL , L ∈ Λ, i =
1, 2, . . . , N ). With the symbols defined above, the MCGM
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Fig. 4. Explanation of the coupling term in the CLS energy function. (a) the change of μ1 with respect to the distance to the outer contour
represented with φ2 (i); (b) the change of μ2 with respect to the distance to the inner contour represented with φ1 (i); (c) the effect of the coupling
term indicated by the red arrows.

model is then given by:

f (yi |Φ,Π) =
∑

L∈Λ

πiL

∑

C∈L

δLC φiC . (3)

B. Expectation Maximization for Model Fitting

1) Expectation Maximization Algorithm: To deter-
mine the class labels, the parameter sets, Φ and Π, must be
estimated. We adopt the EM algorithm to find the maximum
likelihood estimation of the parameters in Φ. Since there is
a one-to-one correspondence between all the components and
Gaussian distributions, we take the component labels zi ∈ X as
the hidden data. The hidden data and the observed image inten-
sity, together form the complete data. An assumption is made
that the intensities of all the pixels should be conditionally in-
dependent.

We use the EM algorithm to iteratively estimate the a
posteriori probabilities of each value of the hidden data zi ,
and model parameters Φ. Here, the values of the prior proba-
bilities in Π are fixed in the EM steps, and the update of Π is
described in Section II-C2). We denote Φ(t) as the estimation of
Φ at the t-th iteration. Let φiC

(t) be the Gaussian value calcu-
lated with parameters estimated in the t-th iteration. The E-step
provides the conditional expectation of the log likelihood of the
complete data Q(Φ|Φ(t)) = E[logp(y, z|Φ,Π)|y,Φ(t) ,Π] by
calculating the posterior probability:

piC
(t) =

πiLδLC
(t)φiC

(t)

∑
L∈Λ πiL

∑
C∈L δLC

(t)φiC
(t) . (4)

The M-step obtains the new estimate of Φ that maximizes
Q(Φ|Φ(t)), i.e Φ(t+1) = argmaxΦQ(Φ|Φ(t)). And the specific
updating equation is:

μC
(t+1) =

∑N
i=1 piC

(t)yi∑N
i=1 piC

(t)
, (5)

(
σC

(t+1)
)2

=
∑N

i=1 piC
(t)

(
yi − μC

(t)
)2

∑N
i=1 piC

(t)
, (6)

δLC
(t+1) =

∑N
i=1 piC

(t)

∑
C∈L

∑N
i=1 piC

(t)
. (7)

2) Initialization of parameters: A proper initialization
is important in the EM algorithm. We register an atlas, con-
taining heart images and corresponding labels of the LV, my-
ocardium and background, to the target DE image. The atlas is
pre-constructed using training data of a healthy volunteer and
the same atlas is used for the segmentation of different data
sets. The labels, {Latlas} determined by the propagated atlas,
are used to initialize the parameters [21], [31], as follows:

πiL =
exp (−αdi,L )∑

L∈Λ exp (−αdi,L )
, (8)

μ
(0)
C = μL − σL +

2 (jC − 1) σL

|L| − 1
, C ∈ L, (9)

(
σ

(0)
C

)2
=

(σL )2

|L| , (10)

δ
(0)
LC =

1
|L| . (11)

Here, di,L represents the shortest Euclidean distance be-
tween pixel i and the pixel sets currently labeled as L. The
parameter α, which controls how blurry the prior probabil-
ity map is, is determined with our experimental experience.
The total number of components in class L is denoted by |L|;
jC , ranging from 1 to |L|, is the index of components in the
class L; μL and (σL )2 are the mean and variance for class
L, which can be estimated as μL =

∑N
i=1 πiLyi/

∑N
i=1 πiL and

(σL )2 =
∑N

i=1 πiL (yi − μL )2/
∑N

i=1 πiL . The means for com-
ponents in class L are initialized to be uniformly distributed in
the interval [μL − σL , μL + σL ] as in (9).

C. Shape Regularization Imposed via Coupled Level Set

1) Introduction of Coupled Level Set Concept: As
mentioned previously, the intensity range of myocardium
overlaps that of the surrounding tissues, which cannot be
differentiated from each other based merely on their intensi-
ties. The MCGM model presented in Section II-A tackles the
problem caused by the intensity heterogeneity. However, the
EM framework does not include spatial information. As a re-
sult, the healthy myocardium and part of the adjacent tissues,
such as liver, may be classified as one component. Similarly,
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the MI could be misclassified as blood pool. We therefore intro-
duce the CLS to impose shape regularization on the class prior
probability πiL , based on the donut shape of myocardium in the
short-axis slices.

In the literature, Han et al. [28] construct the level set en-
ergy function based on the posterior probability updated in the
EM iteration, and a bending-rate term is also added to maintain
the smoothness of the contour. We borrow the posterior prob-
ability based term in this work, and build a new CLS energy
function.

If the CLS is evolved only based on the posterior probabil-
ity, the post-regularization process does not include any other
form of information extracted from image intensity, and thus
may affect the intensity-based classification result after the CLS
evolution. In this situation, the CLS step may counteract the
classification improvement during the EM steps, when regular-
izing the posterior probability to maintain the donut shape. As
a result, if the prior probability is not accurately initialized, the
framework may generate inaccurate segmentation results. To
tackle this problem, we propose an extra force to pull the CLS
towards the actual myocardium contours, thereby providing a
better prior probability for the succeeding EM estimation itera-
tion and accelerate the evolution to the desired results. This is
achieved by adding an image intensity-based energy term into
the CLS.

2) Formulation of the Coupled Level Set: In our
work, the CLS contains two contours, with the inner one rep-
resenting the endocardium and the outer one representing the
epicardium. The two contours are evolved simultaneously, and
a coupling energy is added to control the relative distance be-
tween them, as the thickness of myocardium has a limited vari-
ation within a slice. Since the DE images do not contain the
entire heart and there are misalignments between the slices,
we choose to evolve a 2D CLS on a slice-by-slice basis. The
total driving force function of the CLS includes the image in-
tensity term, the posterior probability term, and the coupling
term. The driving force of φk , k ∈ {1, 2} can be represented as
follows:

Fk (φ1 , φ2) = λFints,k (φ1 , φ2) + υFprob,k (φ1 , φ2)

+ Fcoup,k (φ1 , φ2) , (12)

where λ and υ are weighting parameters, and φ1 and φ2 are the
level set functions of the two contours respectively. The signed
distance function is used as the level set function, with positive
inside and negative outside.

In the image intensity term, we adopt the geodesic active
contour (GAC) model, which contains both the local edge in-
formation in the image and the smoothness constraint of the
contours. The energy function is designed as follows, and
the corresponding driving forced Fints,k (φ1 , φ2), k ∈ {1, 2}
can be obtained by calculating corresponding Euler-Lagrange
equations.

Eints (φ1 , φ2) =
∫

Ω
gδ (φ1) |∇φ1 | dx +

∫

Ω
gδ (φ2) |∇φ2 | dx,

(13)

where g = 1/(1 + |∇Gσ ∗ Y |2) is the edge stopping function,
Gσ is the Gaussian kernel with standard deviation σ, Ω denotes
the 2D image space, and the integral over Ω denotes that the
energy is calculated with all the pixels in the image.

In order to induce the posterior probability term of driv-
ing forces, the corresponding energy term is defined as
follows,

Eprob (φ1 , φ2) = −
∫

Ω
pLVH (φ1) H (φ2) dx

−
∫

Ω
pmyo [1 − H (φ1)] H (φ2) dx

−
∫

Ω
pb [1 − H (φ1)] [1 − H (φ2)] dx,

(14)

where pL (L ∈ {LLV , Lmyo , Lb}) is the function of position
x in 2D image. This term makes use of the posterior prob-
ability of the three classes. For pixel i, pL (i) is the cur-
rently estimated posterior probability of pixel i belonging to
class L from the EM framework. Similarly, the driving force
Fprob,k (φ1 , φ2), k ∈ {1, 2} can be represented with the corre-
sponding Euler-Lagrange equation.

The coupling term is composed of two terms determining the
evolution directions of the two contours respectively:

Ecoup (φ1 , φ2) =
∫

Ω
μ1H (φ1) dx +

∫

Ω
μ2H (φ2) dx, (15)

where H(·) is the Heaviside function H(n) = { 0, n<0
1, n≥0 . The

inner contour shrinks when the parameter μ1 is positive, and
expands when μ1 is negative. Similarly, the outer contour is
controlled by parameter μ2 .

Synthesizing the three terms of the energy function, the two
contours are evolved under the driving force:

∂φ1

∂t
= λδ (φ1) div

(
g
∇φ1

|∇φ1 |
)

+ υδ (φ1) {(pLV − pmyo) H (φ2) − pib [1 − H (φ2)]}
− μ1δ (φ1) , (16)

∂φ2

∂t
= λδ (φ2) div

(
g
∇φ2

|∇φ2 |
)

+ υδ (φ2) {piLVH (φ1) − (pmyo − pb) [1 − H (φ1)]}
− μ2δ (φ2) . (17)

In order to get a relatively uniform myocardium thickness,
instead of fixed numbers, μ1 and μ2 are designed to be spatially
varying to impose the thickness constraint. The values of μ1 and
μ2 are calculated as functions of the distance between pixel i
and the two contours, which can be represented as values of the
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Fig. 5. Computation of the prior probability with the coupled level set (CLS) scheme. (a) the two contour lines; (b) the three labelled pixel sets
according to the contour lines, i.e., the left ventricular cavity (LLV ), myocardium (Lm y o ) and background (Lbg ); (c) the Euclidean distance map of
the myocardium pixel set; (d) the prior probability map of the myocardium.

level set functions φ1 , φ2 [27]:

μ1 (φ2 (i))

=

⎧
⎪⎨

⎪⎩

1 φ2 (i) < (1 − γ) d

−
(

φ2 (i)− d
γd

)3
(1 − γ) d ≤ φ2 (i) ≤ (1 + γ) d

−1 φ2 (i) > (1 + γ) d

, (18)

μ2 (φ1 (i))

=

⎧
⎪⎨

⎪⎩

1 φ1 (i) < − (1 + γ) d(
−φ1 (i)− d

γd

)3
− (1 + γ) d ≤ φ1 (i) ≤ − (1 − γ) d

−1 φ1 (i) > − (1 − γ) d

,

(19)

where d represents the mean thickness of the myocardium. The
parameter γ, subjects to 0 ≤ γ < 1, is the ratio of the my-
ocardium thickness change over the mean thickness d. For a
pixel i in the inner contour, when the shortest distance from i
to the outer contour φ2(i) is less than d, μ1 is positive and thus
the inner contour tends to shrink in pixel i. When φ2(i) > d, the
contour tends to expand in pixel i. A similar force is imposed
on the outer contour simultaneously.

Thus, the CLS takes evolution under the force generated from
both the image intensity gradient and the posterior probability
calculated in the current iteration, as shown in (16) and (17). The
evolved result is then used to update the prior probability πiL for
the next iteration of the EM algorithm. The prior probability is
estimated with an exponential function according to the pixel’s
relative position to the contours of CLS:

πiL =
exp (−αdi,L )∑

L∈Λ exp (−αdi,L )
, (20)

where α and di,L are the same as the notations in (8). The labels
{LCLS} are determined according to the resulting endocardial
and epicardial contour lines of the CLS, as Fig. 5(a) and (b) il-
lustrate. Fig. 5(c) and (d) show the distance and prior probability
map of the myocardium.

In practice, the method converges well. Upon convergence,
the label after shape regularization {LCLS} is taken as the final
results.

The myocardium segmentation results from the MCGM-CLS
framework usually contain part of the papillary muscles, which
are located close to myocardium and have similar intensity.

TABLE I
THE DETAILS OF THE DATA SETS

Number of Slice Pixel Number of Slice
subjects resolution spacing slice thickness

33 490 × 490 0.7292 mm 10–18 5 mm

However, for medical diagnostic purposes, the papillary mus-
cles are generally excluded from the myocardium. Therefore
we compute the convex hull of the inner contour, and use in-
terpolation to include the papillary muscles into the LV class in
each slice.

III. RESULTS AND DISCUSSION

A. Data

Thirty-three DE MRI data sets from patients with MI were
acquired in our institution for this study, which had the approval
from the institutional review board. Each data set comprises
10-18 short axis slices, as shown in Table I. All the slices, in-
cluding the apical and basal ones, were used to test the proposed
method.

We randomly split the data sets into 3 subsets, each subset
containing 11 data. One subset was used to tune the parameters
of the proposed method and the compare methods, and the rest
two were used to evaluate the final results. All the three subsets
were used to show the sensitivity of the parameters to different
datasets.

The manual segmentation of myocardium was provided by an
expert for all the 33 data sets, and was considered as the ground
truth. In order to evaluate the inter-observer variability, we ran-
domly selected 11 subjects for another manual segmentation,
which was performed by a well-trained biomedical engineering
student who was unaware of the methodology of this work.

B. Evaluation Metrics

To quantitatively measure the accuracy of the proposed seg-
mentation method, we adopted the Dice similarity coefficient
(DSC) and average surface distance (ASD). DSC measures
the overlap between the segmentation results of the tested
method and the ground truth, defined as DSC(Sa, Sm ) =
[2|Sa ∩ Sm |/(|Sa | + |Sm |)] · 100%, where Sa and Sm are the
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Fig. 6. Demonstration of typical examples: three cases using the proposed segmentation method and the corresponding ground truth on the
apical, middle and basal slices.

automatic segmentation and the ground truth of the target region
respectively.

ASD measures the average Euclidean distance between the
segmented contours and the ground truth. For every point in a
segmented contour, the Euclidean distance to the nearest point
in corresponding ground truth contour was calculated in a slice
by slice manner, and then the distance was averaged within each
data set.

To examine the correlation and agreement between the
proposed method and the manually delineated ground truth,
we also provided the regression line and the Bland-Altman
plot. The volume encountered by the endocardium and epi-
cardium were calculated in each data set according to the
segmentation results and ground truth respectively. The Pear-
son correlation coefficient (PCC) was also calculated: PCC =
(Cov(Va , Vb))/

√
(Var(Va)Var(Vb)), where Va and Vb are the

calculated volumes of automatic segmentation and ground truth.
The notation Cov(Va , Vb) represents the covariance of Va and
Vb ; Var(Va) and Var(Vb) represent the variance of Va and Vb

respectively. The value of PCC is between −1 and +1, where 1
indicates total positive correlation and 0 implies no correlation.

C. Studies

1) Effectiveness of Proposed Techniques and
Inter-Observer Study: Fig. 6 displays the typical results of
apical, middle and basal slices from 3 data sets, where the white
curves represent the endocardium and epicardium. The segmen-
tation of apical slices is worse than that of the middle and basal
slices, because of their relative low contrast and variable posi-
tions.

Three new ideas, i.e. the multi-component Gaussian mixture
(MCGM) for tackling intensity heterogeneity, the coupled level

set (CLS) for imposing shape priors, and the image intensity
based force (IBF) for improving CLS, are introduced into the
EM-based framework to achieve the fully automatic segmenta-
tion of myocardium from the DE MRI. To study the strength of
the overall method and the effect of each technique, we compare
six segmentation schemes, as follows:

1) MCGM+CLSIBF: This is the proposed method in which
the parameters of the MCGM-based EM framework are
initialized from the propagated atlas and the IBF is intro-
duced into the CLS.

2) MCGM+CLS: This method adopts the atlas propagation
and the CLS constrained EM framework, similar to the
proposed method, but the implementation of the CLS
does not include the image intensity term proposed in
(13). This method is used to evaluate the efficacy of the
image information in the adopted GAC model.

3) MCGM+Atlas: This method employed the MCGM-
based EM estimation framework [21]. Compared to
MCGM+CLS, the CLS is substituted by the propagated
atlas used in the initialization step. Also, to reduce the
influence of noise and impose continuity to the final seg-
mentation, this method adopts the Markov Random Field
(MRF) [31], [32], and the prior probability πiL is the
product of estimated probability form the MRF and that
from atlas propagation. The final labels are determined as
those providing the maximum posterior probability. We
employ this method for evaluating the effect of the intro-
duced CLS, compared with the conventional method, in
imposing spatial information and fitting to the images.

4) CV+CLSIBF: This method is the standard region based
level set method, incorporated with the same coupling
term and intensity term as the proposed method. In the
region based level set, the intensity distribution in each
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TABLE II
THE ACCURACY OF SEGMENTATION RESULTS COMPARED TO MANUAL

SEGMENTATION EVALUATED WITH DSC (%)

Methods Endocardium Epicardium Myocardium

Atlas Seg 85.61 ± 6.24 89.35 ± 3.41 66.11 ± 5.75
MCGM+Atlas 87.17 ± 6.06 89.82 ± 2.97 71.50 ± 5.26
MCGM+CLS 87.32 ± 5.50 90.43 ± 3.48 73.50 ± 5.99
CV+CLSIBF 86.81 ± 5.33 90.02 ± 3.56 72.19 ± 6.56
GrabCut+Atlas 83.43 ± 7.81 88.20 ± 4.31 73.46 ± 5.07
MCGM+CLSIBF 87.43 ± 5.62 90.53 ± 3.20 73.58 ± 5.58
Inter-observer 88.56 ± 5.14 91.57 ± 3.77 73.10 ± 8.10

Note that the inter-observer difference is evaluated on 11 data sets.

TABLE III
THE ACCURACY OF SEGMENTATION RESULTS COMPARED TO MANUAL

SEGMENTATION EVALUATED WITH ASD (MM)

Methods Endocardium Epicardium

Atlas Seg 3.19 ± 1.35 3.21 ± 0.96
MCGM+Atlas 2.80 ± 1.28 3.20 ± 0.91
MCGM+CLS 2.65 ± 1.05 2.89 ± 0.92
CV+CLSIBF 2.73 ± 0.96 3.01 ± 0.95
GrabCut+Atlas 2.70 ± 0.99 3.38 ± 0.96
MCGM+CLSIBF 2.65 ± 1.10 2.88 ± 0.87
Inter-observer 2.64 ± 1.13 2.72 ± 1.36

Note that the inter-observer difference is evaluated on
11 data sets.

class can be taken as being modeled with single Gaussian
function and without prior probability. We added this
method to evaluate the effect of the MCGM.

5) GrabCut+Atlas: We choose the GrabCut as a compared
method to examine the results of the proposed method.
However, as the standard GrabCut method does not con-
tain any spatial constraint, reasonable results cannot be
achieved in many cases. So a GrabCut method using
probabilistic atlas is adopted [33], and in this paper, the
propagated atlases are used to build the probabilistic map
in the same way as initializing class prior probability.
The edges in the GrabCut segmentation are smoothed
and considered as the final results.

6) Atlas Seg: The conventional atlas-based segmentation us-
ing image registration and atlas propagation.

The final endocardial contours in the above mentioned meth-
ods are achieved via convex hull computation and interpolation
except Atlas Seg and GrabCut+Atlas. The registration in all
the six methods consists of three steps, i.e. global affine registra-
tion for localization of the whole heart, locally affine registration
method for initialization of substructures such as the four cham-
bers and great vessels, and free-form deformation registration
for refinement of local details [30]. The resultant transformation
is then used to transform the atlas into the image space of the
target DE MR image.

For each method, the parameters which give the best per-
formance on subset 1 are chosen. The DSC and ASD for the
six methods are calculated over the 22 subjects in the rest two
subsets, which are shown in Tables II and III respectively. The
results of inter-observer variability are also provided.

Fig. 7. The posterior probability map of myocardium and its two
components.

The methods of Atlas Seg, GrabCut+Atlas, and
CV+CLSIBF are the variants of the conventional segmentation
methods. The proposed method outperformed these three meth-
ods in both the DSC and ASD metric. The difference between the
results by the proposed method and ground truth segmentation
is close to the inter-observer variability, which demonstrates
the strength of the proposed method. It is worth mentioning
that even though the myocardial DSC of GrabCut+Atlas is
comparable to that of the proposed method, the epi- and endo-
cardial DSCs of GrbCut+Atlas are evidently lower than the pro-
posed method with statistical significance (DSC of epicardium:
88.20 ± 4.31% for GrabCut+Atlas and 90.53 ± 3.20% for
the proposed method, p = 0.00027; DSC of epicardium:
83.43 ± 7.81% for GrbCut+Atlas and 87.43 ± 5.62% for the
proposed method, p = 0.00129). The relatively good myocar-
dial DSC of GrabCut+Atlas is probably due to the fact that
we used the myocardial DSC as the metric to tune the param-
eters. Furthermore, the elongated shape of myocardium leads
to the relative small area and long contours, which results in a
situation where the GrabCut+Atlas method trends to classify
a larger myocardium area than the ground truth. This leads to
a relatively better myocardial DSC of GrabCut+Atlas, but the
results can be problematic in practice. By contrast, the proposed
method, making use of the mean myocardium thickness and
relative thickness change estimated with the statistical anatomy
data, can mitigate this problem.

From the DSC of myocardium, one can observe that
the propagated atlas provides a relatively poor segmentation
(DSC: 66.11 ± 5.75%). This is because that the registration
between the atlas and the target DE image is challenged by the
existence of MI. Similar problems are seen in related work, for
example in [20], though the strong prior information of the cine
MRI of the same patient is used, manual intervention is required
to guarantee a robust registration between the cine and the DE
MRI.

The effectiveness of MCGM is first examined. Com-
pared to the Atlas Seg, the MCGM+Atlas method achieves
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Fig. 8. Three typical results of the proposed method and three compared methods. The red arrows indicates the improvements compared to the
results demonstrated in its left. The DSC of myocardium is shown below each image.

significant improvements (p < 0.01). This shows that, with the
propagated atlas as a spatial regulation, the MCGM can give a
good description of the intensity distribution of the DE images
and thus improve the segmentation performance. Also, the pro-
posed method gives better results than CV+CLSIBF method
(p < 0.05). This is owing to the ability of MCGM to model the
heterogeneous intensity distribution in myocardium, which can-
not be done with a simple Gaussian function in CV+CLSIBF.
To further visualize the effect of MCGM, we provide the poste-
rior probability maps of myocardium components in Fig. 7.

Then, the effectiveness of MCGM is examined. The
MCGM+CLS method further significantly improves the
segmentation to 73.50 ± 5.99% (p < 0.01) compared to
MCGM+Atlas. For visual illustration of the effect of the CLS,
some typical results of three compared methods and the pro-
posed methods are showed in Fig. 8. Conventionally, the prop-
agated atlas is used as a fixed regularization, which limits the
flexibility of the segmentation algorithm, since the propagated
atlas may provide inaccurate myocardium spatial information.
For example, the MCGM+CLS result of subject 3 in Fig. 8,
as indicated by the arrows, the CLS corrects the inaccurate
delineation of myocardium from the atlas propagation, while
the MCGM+Atlas method fails. Apart from its adaptability,
the CLS also introduces extra information, i.e. the myocardium
thickness constraint, to regularize the shape in the segmentation
results. Such as in subject 1 in Fig. 8, part of the myocardium
in the MCGM+Atlas result is too thin to be realistic.

Finally, the proposed method achieves a DSC of 73.58 ±
5.58%. Although compared to MCGM+CLS the increase in
the DSC is minor over all the 22 data, however, better delineation
of the myocardial boundaries can be observed when the clear
edges can be detected, as shown in Fig. 8. The case of subject 3

Fig. 9. The regression line of the proposed method and ground truth.
(a) volume encountered by endocardium; (b) volume encountered by
epicardium.

illustrates that when the probability-based MCGM-CLS system
becomes trapped in an undesired local optimum, the introduced
image intensity-based force becomes crucial in correcting the
segmentation.

The ASD of endocardium is smaller than that of epicardium
in all the method, probably because the tissue around the en-
docardium is simpler (only blood and myocardium), thus the
boundary is easier to be delineated. However, the DSC of endo-
cardium is smaller than epicardium, probably because the value
of DSC tends to be greater when the evaluated area is larger.

2) Agreement of the Proposed Method With the
Ground Truth: The regression line and Bland-Altman plot
are shown in Figs. 9 and 10. The regression line shows that the
segmentation of endocardium (PCC: 0.90) is better correlated
with the ground truth than the epicardium (PCC: 0.77), which
is in accordance with the low endocardial ASD.

In the Bland-Altman plot, we examine the subject correspond-
ing to the point outside the 2SD lines (red lines in Fig. 10). In
this case, part of the infarcted myocardium is misclassified as
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Fig. 10. The Bland-Altman plot of the proposed method and ground
truth. (a) volume encountered by endocardium; (b) volume encountered
by epicardium.

Fig. 11. The effect of the parameters on average DSC on three subsets.

blood pool in middle slice. At the same time, the apical slices
also suffer from an incorrect detection of the myocardium.

3) Determination of Parameters: In the proposed
method, the parameters d and γ have physical meanings, i.e. the
mean thickness and relative thickness change of myocardium,
and can be estimated using the statistical anatomy data. The
appropriate values of the energy function weighting parameters
λ and υ, and the prior probability parameter α are tuned on the
subset 1. Particularly, Parameters λ and υ are jointly tuned.

To demonstrate the sensitivity of the parameters to different
datasets, the way DSC varies with parameters is showed on not
only the subset 1, but all the three subsets. As shown in Fig. 11,
the best values for the parameters are accordant in the three
subsets.

The first row in Fig. 11 shows how the average DSC of my-
ocardium varies with respect to the different values of param-
eter λ and υ on the three subsets. The best myocardium DSC
is achieved when λ is around 0.1–0.2 and υ between 0.8 and
1.6. The relative small value of λ indicates that the boundaries
of myocardium is indistinct in DE MRI. The DSC drops dra-
matically when λ increases and υ decreases, while it remains
stable with a slow decrease in the opposite case. This indicates
that a relative large intensity gradient based force may leading
the contour to disturbing edges, while a relative small force can
help refine the results.

TABLE IV
THE RESULTS REPORTED IN THE LITERATURE

Reference Data ASD DSC (%)

Dikici et al.
2004

42 slices Endo and Epi:
1.54 ± 0.39 pixels

(pixel size of 1.5 mm)

N/A

Ciofolo et al.
2008

27 subjects Endo: 2.2 ± 0.6 mm
Epi: 2.0 ± 0.8 mm

N/A

Wei et al. 2013 21 subjects Endo: 0.94 ± 0.44 mm,
1.51 ± 0.74 mm

Endo: 95.33 ± 3.63,
92.64 ± 4.36

Epi: 0.90 ± 0.41 mm,
1.68 ± 0.70 mm

Epi: 96.88 ± 1.84,
94.35 ± 2.70

Myo: 88.57 ± 4.75,
82.32 ± 5.59

Ours 33 subjects Endo: 2.70 ± 0.94 mm Endo: 86.74 ± 5.82
Epi: 2.98 ± 0.89 mm Epi: 90.40 ± 3.17

Myo: 73.77 ± 5.56

Note that Wei et al. (2013) evaluated the results with two sets of manual segmentations.
Endo, Epi and Myo represent endocardium, epicardium and myocardium respectively.

The variation of average DSC of myocardium as a function
of the parameter α is plotted in second row in Fig. 11. The
proposed method achieves the best segmentation results when
α is 1.4. And the average DSC drops dramatically when the
value of α become smaller, since the shape regularization is
not efficiently imposed. While the decrease of average DSC is
relatively slow when the value of α become larger, in which sit-
uation the imposed shape regularization is too strong to achieve
further improvement.

Finally, our segmentation program is built on Matlab with
non-optimized code and performed on a personal computer
equipped with Intel E5200 2.50 GHz processor and 2GB RAM.
The runtime from the initialization of parameters (after regis-
tration was performed) to the accomplishment of convex hull
computation is recorded. The average runtime for one subject is
1.26 ± 0.43 minutes. The registration tools are implemented in
C++ and downloaded from the ZXHPROJ webpage [34]. The
computation time of the registration is 6.03 ± 1.60 minutes.

4) Results in the Literature: We list the segmentation
results of DE MRI reported in the literature for reference (Ta-
ble IV). As we mainly focus on myocardial segmentation, only
those studies with quantitative evaluation of myocardium seg-
mentation are shown. It should be noted that an objective inter-
study comparison is difficult, since the data sets and implemen-
tation can be different.

All the three studies reported in the literature make use of
the segmentation of cine MRI, which provides strong prior in-
formation for the segmentation of DE MRI. In the work of
Wei et al. [20], manual registration was introduced when the
automatic translational registration failed on certain slices. By
contrast, our approach takes single predefined atlas and is fully
automatic. The results of [20] were evaluated with two sets
of manual segmentation, and the reported inter-observer agree-
ment was much higher: the DSC for myocardium of the two
manual segmentation sets is 82.93 ± 5.28%, and ASD for en-
docardium and epicardium are respectively 1.46 ± 0.66 mm,
1.56 ± 0.58 mm. This indicates the difference, in terms of dif-
ficulty of performing myocardium segmentation, between their
datasets and ours.
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IV. CONCLUSION AND FUTURE WORK

In this work, we have explored the possibility of delineating
the myocardium from DE MRI, employing a fully automatic
framework. The image intensity is modeled with a MCGM
model, and the parameters are estimated using the EM algo-
rithm. A CLS, with probability, intensity and coupling terms, is
introduced into the iteration to impose a spatial regularization
to the prior probabilities.

As the results demonstrate, the propagated atlases provide a
relative poor initial estimation of the myocardium. The shape of
the heart can be very different between the atlas and the target
DE MRI, making it difficult to achieve an accurate registration
between them. Furthermore, with the irregular infarct patterns
and relative low contrast of DE images, the recovering of accu-
rate myocardium contours becomes particularly challenging. In
the context of clinical practice, the DE and T2 MRI of the MI
patients are usually analyzed simultaneously to evaluate both
the MI and edematous regions. Therefore, in future work we
will combine the complementary information from the T2 and
DE cardiac MRI within a unified framework, and perform the
segmentation on the two sequences simultaneously. Also, in this
paper, we mainly focus on the segmentation of myocardial in-
farction cases. In the future work, we plan to collect more data
and evaluate the proposed method in different datasets with
various pathologies and cardiac conditions.
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