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A B S T R A C T   

Coronary artery disease (CAD) is a major threat to human health. In clinical practice, X-ray coronary angiog
raphy remains the gold standard for CAD diagnosis, where the detection of stenosis is a crucial step. However, 
detection is challenging due to the low contrast between vessels and surrounding tissues as well as the complex 
overlap of background structures with inhomogeneous intensities. To achieve automatic and accurate stenosis 
detection, we propose a convolutional neural network-based method with a novel temporal constraint across X- 
ray angiographic sequences. Specifically, we develop a deconvolutional single-shot multibox detector for 
candidate detection on contrast-filled X-ray frames selected by U-Net. Based on these static frames, the detector 
demonstrates high sensitivity for stenoses yet unacceptable false positives still exist. To solve this problem, we 
propose a customized seq-fps module that exploits the temporal consistency of consecutive frames to reduce the 
number of false positives. Experiments are conducted with 148 X-ray angiographic sequences. The results show 
that the proposed method outperforms existing stenosis detection methods, achieving the highest sensitivity of 
87.2% and positive predictive value of 79.5%. Furthermore, this study provides a promising tool to improve CAD 
diagnosis in clinical practice.   

1. Introduction 

Coronary artery disease is the most common type of heart disease 
and a major cause of mortality worldwide [1]. It occurs when obstruc
tive atherosclerotic plaque builds up in the inner walls of coronary ar
teries. This causes stenosis, i.e., the narrowing or occlusion of the 
coronary artery lumen, leading to severe symptoms such as angina and 
even myocardial infarction. X-ray coronary angiography (XCA) is 
currently regarded as the gold standard for coronary artery stenosis 
detection. With an injected contrast agent, XCA can offer anatomical 
information of even very small vessels and enable cardiologists to 
observe dynamically from different projection angles. Cardiologists can 
then identify and locate each stenosis with a visual assessment. Fig. 1 
shows XCA frames with annotated stenoses. 

Manual detection of stenosis is subjective and time-consuming, 
requiring rich clinical experience. Therefore, developing an XCA-based 
automatic detection algorithm can improve diagnostic efficiency and 
confidence. However, it is also challenging due to complex vessel 

structures, poor contrast between vessels and surrounding tissues, 
nonuniform illumination, and overlap of background structures with 
inhomogeneous intensities. Existing methods are mainly based on 
computed tomography angiography (CTA), which can be divided into 
three main categories: (1) lumen segmentation-based methods; (2) 
arterial wall segmentation-based methods; and (3) centerline extraction- 
based methods. Lumen segmentation-based methods identify stenosis by 
measuring the lumen diameter. Shahzad et al. [2] extracted the 
centerline and employed graph cuts and robust kernel regression to 
segment arterial lumens. Stenosis was identified by comparing the real 
diameter of the segmented lumen with the expected diameter of the 
modeled healthy lumen. Arterial wall segmentation-based methods 
identify stenosis by measuring the diameter difference between the 
inner and outer walls. Wang et al. [3] adopted a level-set model to 
segment the inner and outer arterial walls. A large difference between 
the two diameters indicated the existence of stenosis. Similarly, 
Broersen et al. [4] first detected arterial wall contours and then used a 
regression model to calculate the deviations from normal vessels to 
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detect stenosis. Centerline extraction-based methods identify stenosis by 
analyzing the image patches along the vessel centerline. Zerik et al. [5] 
extracted patches from multiplanar reformation CTA image volumes. A 
recurrent neural network was adopted to process the patch features 
along the centerline and determine the position of a stenosis. Despite 
these achievements, stenosis detection based on CTA images is generally 
influenced by low resolution, motion artifacts and severe vascular 
calcification. Therefore, XCA is still indispensable for cardiologists in 
clinical practice. 

However, compared with CTA, relatively few studies are based on 
XCA. Related works can be divided into two main categories: semi
automatic methods and fully-automatic methods. Semiautomatic 
methods ignore the automatic detection task. They require human in
teractions to locate a stenosis and only focus on assessing its severity. 
After vessel structures were extracted with different methods, e.g., 
deformable spline with string matching [6] and Hessian vesselness filter 
with wavelet-based image fusion [7], the diameter of the target stenosis 
was manually measured to evaluate the severity. Fully-automatic 
methods concentrate on achieving automatic stenosis detection. The 
algorithm proposed by Wan et al. [8] integrated noise reduction, 
vascular structure enhancement, skeleton extraction, vessel diameter 
estimation and data postprocessing for stenosis detection. Similarly, 
Compas et al. [9] conducted vascular structure enhancement and 
extracted the skeleton for vessel diameter measurement. Stenosis iden
tification was based on not only diameter variations but also spatio
temporal tracking. Despite a good performance, fully-automatic 
methods still have limitations: multiple preprocessing procedures, such 
as vessel enhancement, segmentation and skeleton extraction are per
formed in a single frame to detect stenosis. This is a time-consuming 
process, and the intrinsic complexities of XCA images prevent these 
substeps from obtaining ideal intermediate results. As a consequence, 
errors might accumulate, hampering final stenosis detection. 

To avoid the cumbersome preprocessing steps for a single frame in 
traditional stenosis detection methods, we turn to convolutional neural 
network (CNN), the state-of-the-art method for object detection 
[10–14], to achieve stenosis detection. It is an end-to-end method with a 
strong feature extraction ability, generating detection results for every 
single frame quickly and directly. However, due to vessel motion and 
contrast agent flow, stenosis-like structures such as bent vessels or 
instantaneous contrast agent inhomogeneity appear in some of the 
frames, which might mislead the network to generate false positive 
detections. Therefore, detecting stenosis from single frames is not robust 
enough. Considering that these interferences are generally 
time-dependent, we propose to exploit the potential temporal charac
terization of the XCA sequence. Consecutive frames are selected with the 
corresponding CNN detection results summarized to remove false 
positives. 

In conclusion, in this study, we propose a deep learning-based object 
detection network with temporal constraints on the XCA sequence to 

achieve automatic coronary artery stenosis detection. First, consecutive 
contrast-filled frames that are most beneficial for detection are selected 
by the segmentation network U-Net [15] to provide necessary temporal 
information. Then, a deconvolutional single-shot multibox detector 
(DSSD) [16] is applied to conduct stenosis detection directly on the 
selected raw X-ray angiograms without multiple preprocessing steps, 
providing static detection results for every single frame. Finally, with the 
designed temporal module called “sequence-false positive suppression” 
(seq-fps), we exploit the potential temporal consistency of the selected 
frames and produce constraints, which removes false positives and 
generates the final detection results. 

The main contributions of this study are as follows: first, we propose 
a new framework for coronary artery stenosis detection with an XCA 
sequence. Second, to the best of our knowledge, this is the first work that 
has focused on coronary artery stenosis detection in X-ray angiograms 
using a deep learning-based object detection method. Third, we design 
the seq-fps module to exploit the potential temporal consistency of 
consecutive XCA frames, which is effective in false positive suppression. 
In general, the proposed method is superior in stenosis detection, out
performing traditional methods. 

2. Materials and methods 

2.1. Data description 

The raw XCA sequence data used in this study were acquired from 
the Department of Cardiothoracic Surgery, Peking Union Medical Col
lege Hospital of China. They were collected from 63 patients (40 men 
and 23 women) with ages ranging from 51 to 67 years. The patients all 
underwent femoral artery cardiac catheterization in a supine position 
screened by an Philips UNIQ FD10 C-arm system platform. Eight milli
liters of iodixanol-320 (contrast agent) was injected into each patient at 
every injection. The scanning parameters were: an X-ray tube voltage of 
120–140 kVP, a field of view of 25 cm, and sequence lengths varying 
from 3 to 5 s at 14 frames per second. The resolution of each frame is 
512� 512. 

2.2. Methods 

A flow diagram of the proposed framework is shown in Fig. 2, which 
includes three major parts: contrast-filled frames selection based on U- 
Net, single frame stenosis detection based on an DSSD and false positive 
suppression based on seq-fps. The following three chapters will describe 
each part. 

2.2.1. U-Net based contrast-filled frames selection 
Automatic identification of the contrast-filled frames from an XCA 

sequence is the first step of the proposed algorithm. These frames are the 
most appropriate for stenosis detection since they show complete cor
onary artery structures. Inspired by previous works [17,18] that 
concentrated on detecting the contrast inflow, we employ a simple 
method based on U-Net, which is a classic neural network for image 
segmentation, to handle the contrast-filled frames selection task. 

In an XCA sequence, a complete coronary artery structure gradually 
emerges as the radiopaque contrast agent flows in and subsequently 
fades as the contrast agent flows out. Since a well-trained U-Net only 
responds to visible contrast-filled vascular parts, we think that the area 
of segmented vascular structures in the output binary image can 
represent the overall contrast-filling degree of the input frame. There
fore, the most contrast-filled frame can be determined by searching for 
the maximum of the U-Net segmented vascular areas. However, a single 
frame is not enough since our algorithm requires the necessary temporal 
constraint from consecutive X-ray frames to reduce the number of false 
positives. Therefore, we select N frames before and after the most 
contrast-filled frame. According to clinical experience, with a reasonable 
value for N, all the ð2N þ 1) frames are sufficiently contrast-filled and 

Fig. 1. XCA frames from two different sequences. The coronary arteries 
enhanced with contrast agent are the dark tubular structures. The stenoses are 
annotated with yellow rectangles and arrows. 
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useful for stenosis detection and diagnosis. The DSSD network will 
generate rough stenosis detection results for each of these frames, pre
paring for the subsequent seq-fps module. 

2.2.2. Deconvolutional single-shot multibox detector 
The DSSD network (shown in Fig. 3) is the second part of the pro

posed framework. Apart from the powerful feature representation abil
ity, the DSSD is also chosen for its high efficiency [19] and ability to be 
trained from scratch [20]. The backbone model of the applied DSSD is a 
typical VGG (Visual Geometry Group) [21] convolutional neural 
network, consisting of 19 convolutional layers with 3� 3 kernels and 7 
max pooling layers. Since the resolution of the input X-ray image is 
512� 512, the DSSD produces feature maps with resolutions ranging 
from 256� 256 to 4� 4. The deconvolution module (shown in Fig. 4) 
doubles the resolution of the high-level feature map with the learned 
deconvolutional layer and further combines feature maps from two 
different levels by elementwise summation. This step merges semantic 
information and location information, generating feature maps with 
richer contents that are beneficial for the detection task. Three decon
volution modules are applied to produce the final feature map with a 
resolution of 32� 32. At the bottom of the network are two branches for 
classification and localization, which are also convolutional layers that 
adapt the channel number of the output feature map to the detection 
target. The localization branch outputs four channels with position in
formation, and the classification branch outputs two channels with 
stenosis existence information for each default box. After the model is 
designed, we follow three basic procedures to train the DSSD. 

First, we generate fixed bounding boxes called default boxes with 
different positions, scales and shapes. Taking an n� n feature map as an 
example, we regard it as n� n cells, whose centers are set as the default 
box centers. Then, the x and y coordinates of the default boxes’ centers 

are: ðx; yÞ ¼
�

iþ0:5
n ;

jþ0:5
n

�

; i; j ¼ 0; 1;…; n � 1, where i and j are in

cremental variables denoting the horizontal and vertical indexes, 

Fig. 2. Framework of the proposed method. The whole algorithm works as follows: first, the contrast-filled frames of an input XCA sequence are selected based on the 
U-Net segmentation results (shown in chronological order from top to bottom). Then, the DSSD provides rough results for each selected frame (yellow arrows for true 
positives and aqua arrows for false positives). Finally, the seq-fps module summarizes the rough results and removes false positives, generating the final results. 

Fig. 3. Structure of the DSSD network. It requires a raw XCA frame as input and outputs the detected stenosis (marked in yellow rectangles). The blue block denotes 
the combination of three basic operations – ‘Conv’ (convolution), ‘BN’ (batch normalization) and ‘ReLU’ (rectified linear unit), and the green block denotes the max 
pooling operation. The localization and classification branches are two convolutional layers that determine the existence and position of a stenosis. 

Fig. 4. Structure of the deconvolution block. The green block denotes a high- 
level feature map with lower resolution and the blue block denotes a low- 
level feature map with higher resolution. ‘conv’, ‘bn’ and ‘relu’ indicate 
convolution, batch normalization and the rectified linear unit, respectively; 
‘conv_transpose’ denotes the transposed convolution that doubles the resolution 
of the high-level feature map. 
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respectively, of a given cell. Furthermore, given a scale of s and an aspect 
ratio of r, the width ðwÞ and height ðhÞ of a default box are obtained: ðw;

hÞ ¼
�

s
ffiffi
r
p

; sffiffi
r
p

�

. A default box is thus denoted by ðx; y; w; hÞ. 

Second, we select the positive default boxes and encode the locali
zation information. For a default box, if its IoU (Intersection-over- 
Union) value with any annotated ground truth box exceeds the threshold 
Tpos� iou, it is regarded as positive. The IoU value is computed as follows: 

IOU¼ D \ G=D [ G; (1)  

where D and G refer to the default box and ground truth box, respec
tively. Then, by computing the offsets from its best-matched ground 
truth box, a positive default box obtains the localization information 
from the ground truth labels. The four offsets of the x-coordinate, y- 
coordinate, width and height, corresponding to the four-channel output 
for each default box in the localization branch, are the regression targets 
of the DSSD. The offsets (denoted by O*) are computed as follows: 

Ox ¼ c1
�
xg � xd

��
wd; (2)  

Oy ¼ c1
�
yg � yd

��
hd; (3)  

Ow ¼ c2log
�
wg
�

wd
�
; (4)  

Oh ¼ c2log
�
hg
�

hd
�
; (5)  

where x, y, w and h refer to x-coordinate, y-coordinate, width and 
height, respectively. The subscript indexes d and g refer to the default 
box and ground truth box, respectively. c1 and c2 are two constants that 
adjust the scales of the offsets to accelerate network training. 

Finally, we adjust the positions, scales and shapes of the positive 
default boxes towards their matched ground truths by iterative network 
training. The localization loss Lloc is defined as in the paper by Fu et al. 
[16]: 

Lloc
�
lm
i ; gm

i

�
¼
X

i2p ​ ​

X

m2fx; y; w; hg

fs
�
lm
i � gm

i

�
; (6)  

sðzÞ¼
�

0:5z2 jzj < 1
jzj � 0:5 otherwise;

(7)  

where fs denotes the smooth-L1 function and p denotes the positive 
category. lmi and gm

i denote the predicted and ground truth box offsets, 
respectively. In addition to the localization loss, the classification loss is 
also essential for network training. It should be noted that the locali
zation loss is only for positive default boxes and the classification loss is 
for every box. However, considering that there are far more negative 
boxes than positive ones and that a sample imbalance is harmful to 
training, we randomly select negative samples to maintain a reasonable 
ratio. The classification loss Lcls is calculated with the binary cross- 
entropy: 

Lclsðxi; piÞ ¼
X

i
ðxilogpi þ ð1 � xiÞlogð1 � piÞ Þ; (8)  

where xi and pi denote the category label and predicted probability, 
respectively. The total loss L is the weighted sum of the classification loss 
Lcls and the localization loss Lloc: 

L¼
1

Npos
ðLcls þαLlocÞ; (9)  

where α is a weight parameter and Npos denotes the number of positive 
default boxes. 

When testing, the trained DSSD outputs a confidence score and off
sets for each default box. We select the positive boxes and reverse the 
computational process of equations (1)–(4) to obtain real bounding 
boxes. Finally, NMS (non-maximum suppression) [22] is conducted to 

select the most suitable bounding box for a stenosis and remove 
redundant boxes. 

2.2.3. Sequence-false positive suppression 
The DSSD has high sensitivity; however, it is still influenced by a 

certain number of false positives. These false positives are generally 
stenosis-like structures generated by time-dependent contrast agent in
homogeneity and vessel motion, which might be unstable in the time 
domain. This phenomenon inspires us to exploit the potential temporal 
information of an XCA sequence to remove false positives. 

Based on a video object detection algorithm seq-nms (sequence-non- 
maximum suppression) [23], we design the temporal module called 
seq-fps. It is performed on the DSSD network results of consecutive 
contrast-filled frames selected by U-Net, which selects the stenosis that 
most frequently appears in an XCA sequence, thus filtering out 
remaining random false positives. The module begins with the first two 
frames of the selected frames. A candidate box in the first frame can be 
linked to a candidate box in the second frame if their IoU value is above 
the threshold Tseq� iou. If two or more candidate boxes in the second 
frame satisfy the requirement, the box with the largest IoU value will be 
chosen to establish detection persistence. If no box linkage in the first 
two frames exists, the procedure will continue to the next two adjacent 
frames until a box linkage is finally found. Then, for the following frame, 
if the IoU value between one of its candidate boxes and the end of the 
linkage is greater than Tseq� iou, the box will join and lengthen the link
age, becoming the new end. A box linkage will be built frame by frame 
following these procedures. Multiple box linkages focusing on different 
detected stenoses can be established simultaneously. It is also possible 
that the detection of a specific stenosis will be interrupted at middle 
frames due to motion or overlaps, which causes the disconnection of an 
ideal box linkage. Therefore, we will search and reconnect these link
ages. A more complete new linkage will be established based on two 
shorter linkages if the end box of one linkage and the start box of the 
other linkage satisfy the Tseq� iou threshold requirement. Fig. 5 shows the 
process of the seq-fps module. In practical applications, Ncf denotes the 
number of selected contrast-filled frames and Nsf is the threshold for the 
established box linkage length. If a box linkage length is greater than Nsf , 
we regard its corresponding detections as true positives and preserve 
them. The remaining candidate boxes will be regarded as false positives 
and removed. 

3. Experiments and results 

3.1. Implementation details 

We obtained 148 XCA sequences in total. Five-fold cross-validation 
experiments were conducted with 123 sequences: each time, 4/5 of the 
data are used for training, and 1/5 of the data are used for validation. 
The remaining 25 sequences are fixed as the test set. The validation set is 
used to tune the hyperparameters, and the test set is used to evaluate the 
performance of the final optimal model. The numbers of sequences and 
the corresponding numbers of stenoses are listed in Table 1. 

When training the segmentation network U-Net, 60 images are 
collected from different sequences with experienced cardiologists of
fering pixel-level annotations to distinguish foreground vessel structures 
from the background. The gray values of the XCA images are normalized 
to -1-1 before being input into U-Net. When training the DSSD, each 
sequence is divided into single frames. The cardiologists randomly select 
6 discontinuous contrast-filled frames from each sequence and provide 
ground truth bounding boxes for stenoses with the professional labeling 
software Colabeler. The selection of multiple frames can be regarded as a 
special data augmentation approach, which introduces the variance 
within the XCA sequence (e.g., motion and brightness variation) into the 
training set. According to clinical experience, only a stenosis with a 
degree�50% is considered significant and requires treatment. When 

W. Wu et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 118 (2020) 103657

5

labeling, once a significant stenosis is identified, regardless of whether it 
is at the main vessel or at a bifurcation, a bounding box of suitable size is 
drawn to cover it. In our dataset, the stenosis size is usually approxi
mately 30� 30 pixels, taking up a small portion of the vessel segment. In 
cases where a long and thin stenosis appears, the provided ground truth 
bounding box only covers the junction of the stenosis and the normal 
vessel. 

The DSSD network is implemented in the TensorFlow [24] frame
work. The software environment is: Tensorflow version 1.10.1, CUDA 
version 9.0.176, cuDNN version 7.0.3, and Python version 3.6.7, and the 
operating system is Ubuntu 16.04 LTS. The hardware environment is 
made up of a 4-core 2.4 GHz Intel Xeon E5-2630 v3 processor and a 
single Nvidia Titan X Pascal GPU. Convolutional layers are initialized 
with random weights sampled from a standard Gaussian distribution. 
The total number of iterations is 40K. The initial learning rate is 0.1, 
which decays exponentially by a power of 0.9. Batch normalization is 
conducted to achieve faster convergence and L2 regularization with λ ¼
10� 4 is employed to avoid overfitting. The batch size is 10, and the 
Adam optimizer is adopted to train the network. Data augmentation 
methods, which include horizontal and vertical flipping, rotation (90�, 
180� and 270� clockwise), translation (30 or 60 pixels in the right, left, 
up and down directions), contrast adjustment (α ¼ 0:5; 0:75; 1:5) and 
brightness adjustment (β¼ � 50; þ50Þ with the formula y ¼ αxþ β are 
employed to expand the training set, making the network more robust to 
image variations in XCA sequences. The scale of the default box of the 
DSSD is set to 40� 40 pixels and is normalized to 0.078125 (40/512), 
which is slightly larger than the real stenosis size to ensure full coverage. 

Three aspect ratios (1, 2/3 and 3/2) are arranged so there are three 
default boxes in one cell. We set Tpos� iou ¼ 0:5, c1 ¼ 5, c2 ¼ 10, the loss 
weight α ¼ 1 and maintain a positive-negative ratio of 1:3 when 
training, as suggested in Ref. [25]. The threshold of the output confi
dence score is set to 0.9 to select positive predicted boxes when testing. 
The parameters of the seq-fps module are chosen with cross-validation 
experiments described in chapter 3.4. 

In the following experiments, three metrics, the sensitivity (SN), 
positive predictive value (PPV) and F1-score, which are calculated with 
the number of TPs (true positives), FPs (false positives) and FNs (false 
negatives) are used to evaluate the performance of the algorithm: 

SN ¼ TP=ðTPþ FNÞ; (10)  

PPV ¼TP = ðTPþFPÞ; (11)  

F1 � score ¼ 2*SN*PPV=ðSNþPPVÞ: (12)  

3.2. Performance of U-Net for contrast-filled frames selection 

Fig. 6(a) shows raw frames from an X-ray sequence shown in chro
nological order. Fig. 6(b) shows the corresponding U-Net segmentation 
results. As the contrast agent flows in, the coronary artery structure 
gradually becomes complete, and simultaneously, the corresponding 
segmented vascular area becomes larger. This figure qualitatively re
veals U-Net’s ability to select contrast-filled frames. To conduct a 
quantitative evaluation, we compare the U-Net-based method with four 
other methods. Among them, three are also segmentation-based 
methods, and one is a classification-based method. 

The three segmentation-based methods are the Frangi filter algo
rithm [26] with Otsu’s thresholding [27], Coye’s method [28] and 
MSRG (multiscale region growing) [29]. Fig. 6(c), (d), and 6(e) show the 
corresponding segmentation results of these methods. Visually, U-Net 
outperforms the other segmentation methods with a superior ability to 
preserve tiny structures. To generate a normalized contrast-filling de
gree, the segmented vascular area of each frame is divided by the 

Fig. 5. Illustration of sequence false positive sup
pression. The images on the left are consecutive 
frames from an XCA sequence shown in chrono
logical order from top to bottom, and the images on 
the right are their corresponding results after seq- 
fps (true positives and false positives are marked 
with yellow and aqua, respectively). The middle 
images are candidate detections provided by the 
DSSD for single frames, which are cropped from the 
images and zoomed for better visualization. Once 
the detected regions from two consecutive frames 
have an IoU value above the given threshold, a 
linkage is built for them (shown with a red line). 
The seq-fps module keeps all the candidate de
tections on the linkage and removes all the 
remaining detections.   

Table 1 
Numbers of sequences and the numbers of stenoses in the datasets (‘Val’ means 
validation).  

Dataset Val1 Val2 Val3 Val4 Val5 Test 

Number of sequences 25 24 25 24 25 25 
Number of stenoses 34 32 33 34 35 36  
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maximum vascular area of the sequence. 
In the classification-based method, we build a classification neural 

network ResNet [30] to deal with the frame selection task. It is trained 
with 90 XCA sequences with data augmentation. Instead of selecting one 
best frame from a sequence, which is difficult due to severe imbalance 
between the numbers of positive and negative samples, we label the 
frames as one of three categories (‘zero’, ‘partial’ and ‘full’) according to 
contrast-filling degree. The output probability of ‘full’ is used to repre
sent the contrast-filling degree. 

We used 45 XCA sequences to test these methods. Since a sequence 
usually has multiple contrast-filled frames that are equally effective for 
diagnosis, the cardiologists labeled three consecutive frames as the 
ground truth for each sequence. A selection within the ground truth is 
regarded as accurate. Fig. 7 shows the variations in the normalized 
contrast-filling degree with the frame index, based on the cases shown in 
Fig. 6. The U-Net curve is smooth and has an elegant trend, with a peak 
appearing at the 38th frame, corresponding to the ground truth. The 
other segmentation-based curves, although they have similar trends as 
that of U-Net, are much sharper, with peaks appearing at the 42nd, 48th 
and 36th frames. ResNet regards all the frames after the 32nd frame as 
contrast-filled frames, with the latter part of the curve being flat; 

therefore, the peak is the middle frame (i.e., the 48th frame; the middle 
frame of a flat curve is chosen as the peak). The quantitative comparison 
results, for the accuracy and speed under GPU acceleration are shown in 
Table 2. 

3.3. Performance of the DSSD for single-frame detection 

Fig. 8 shows the DSSD network results of single frames from three 
different patients. All the predicted stenoses are annotated automati
cally by the algorithm. For better visualization, we manually highlight 
the true positives with yellow rectangles and arrows and the false pos
itives with aqua rectangles and arrows. We can see that the DSSD shows 
high sensitivity for stenosis detection but the existence of false positives 
remains a problem. As mentioned in chapter 3.2, for each sequence, a 
cardiologist selected three frames that are best for diagnosis. By aver
aging the DSSD network results of these selected frames, we obtain the 
single-frame detection performance of the validation sets with a sensi
tivity of 86.3%, a PPV of 46.5% and an F1-score of 60.4%. 

Fig. 6. Raw frames (a) from an X-ray sequence (64 frames in total) and their corresponding segmentation results: U-Net (b), Frangi þ Otsu (c), Coye’s method (d) and 
MSRG (e). These 6 frames are the 8th, 21st, 38th, 42nd,48th and 63rd frames, respectively, shown in chronological order. 
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3.4. Performance of the seq-fps module and parameter selection 

There are three hyperparameters worth noting: the number of 
selected contrast-filled frames Ncf , the number of stenosis-appearing 
frames Nsf and the IoU threshold Tseq� iou, the latter of which de
termines whether bounding boxes from neighboring frames belong to 
the same stenosis-like region. The displacements of a specific stenosis 
between frames, mainly caused by cardiac motion, can be very large 
compared with its own tininess. Therefore, our experimental results 
suggest that Tseq� iou should be relatively small to build stable stenosis 
linkages across target frames. It is set to 0.1 in our experiment, which 
works fairly well. We pay more attention to Ncf and Nsf . The average 
heart rate of an adult is approximately 75 beats per minute, so the 
cardiac cycle is approximately 0.8 s. Considering that the FPS (frames 

per second) of the collected XCA sequence is fixed to 14, approximately 
11 (14*0.8 ¼ 11.2) frames are needed to observe a complete cardiac 
cycle. However, variations exist among the heart rates in different XCA 
sequences; therefore, we try three different values of Ncf ð2N þ 1Þ: 9, 
11, 13. Since Nsf should be smaller than Ncf , three Nsf ​ values (Ncf � 1, 
Ncf -2 and Ncf -3) are also arranged for each Ncf . We conduct cross- 
validation experiments to test the performance of different parameter 
combinations. Fig. 9 shows the average sensitivity, PPV and F1-score of 
the validation sets. We choose the optimal parameters by comparing the 
composite index F1-score. The variance analysis experiment is carried 
out with MATLAB (2014a) and generates P ¼ 4:70e � 18 < 0:01, 
showing that Ncf and Nsf have a significant influence on the detection 
performance. Fig. 9 demonstrates that the selection of Ncf ¼ 11 and Nsf 
¼ 8 is the best choices, obtaining the highest F1-score of 84.2% with a 
sensitivity of 88.7% and a PPV of 80.2%. Further analysis of the influ
ence of these two parameters will be presented in the discussion section. 

Based on Ncf ¼ 11 and Nsf ¼ 8, we compare the detection results of 
the test set with and without seq-fps. Fig. 10 shows the detection results 
of patient #2 from Fig. 8. The single-frame detection results of the DSSD 
for 8 consecutive contrast-filled frames selected by U-Net are shown in 
Fig. 10 (a). A true stenosis is detected steadily, appearing at every frame, 
while false positives lack temporal persistence, appearing randomly. The 
corresponding seq-fps-modified results of the frames in Fig. 10 (a) are 
shown in Fig. 10 (b). False positives have been successfully removed 
while the true stenosis is still maintained. When testing with the whole 

Fig. 7. Variations in the contrast-filling degree with the frame index (cases in Fig. 6). The horizontal axis is the frame index, and the vertical axis shows the 
normalized contrast-filling degree. The results of U-Net, Frangi þ Otsu, Coye’s method, MSRG and ResNet are shown. 

Table 2 
Quantitative comparison of the frame selection methods measured by accuracy 
and speed.  

Method Accuracy Speed (seconds/frame) 

U-Net 86.7% 0.035 
Frangi þ Otsu 44.4% 0.252 
Coye’s method 64.4% 0.207 
MSRG 71.1% 0.463 
ResNet 33.3% 0.017  

Fig. 8. Single-frame detection results of the DSSD from three patients. True positives and false positives are marked with yellow and aqua, respectively.  
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dataset, we obtain average single-frame detection results with a sensi
tivity of 87.1%, a PPV of 46.1% and an F1-score of 60.3%. After the 
processing of the seq-fps module, the sensitivity remained almost un
changed, and the PPV greatly improved from 46.1% to 79.5%. This 
finding indicate the efficiency of the temporal constraint of the XCA 
sequence for reducing the number of false positives. 

3.5. Robustness test 

Due to various conditions of clinical data acquisition, the collected 
XCA sequences might have different illumination and contrast levels. 
Experiments have been conducted to verify the robustness of the pro
posed framework to these variations with the test dataset. Contrast and 
brightness variations are simulated with formula gðx; yÞ ¼ αfðx; yÞþ β. 
fðx; yÞ and gðx; yÞ denote the original and transformed gray values, 

Fig. 9. Average sensitivity, PPV and F1-score of the validation sets with different Ncf and Nsf combinations.  

Fig. 10. DSSD and seq-fps detection results for one XCA sequence. True positives and false positives are marked with yellow and aqua, respectively. (a) shows 8 
consecutive frames from one sequence showing the DSSD-based single-frame detection results. (b) are the corresponding results of (a) after seq-fps processing with 
false positives removed. 
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respectively, at pixel ðx; yÞ, and α and β adjust the contrast and 
brightness levels, respectively. We experimented with α ¼ 0:5; 0:75;
1:25; 1:5 and β ¼ � 75; � 25; þ 25; þ 75. Fig. 11 shows the results of 
the robustness test for the case in Fig. 10 (we only show the detection 
result of frame #5 for simplicity). The overall results of the test dataset 
demonstrate that the original detections remain stable under most 
conditions. Even in the extreme situation β ¼ � 75 where images become 
very dark and vessel structures merge with the background, the frame
work still has good performance with only 3 true positives and 2 false 
positives missing compared with the original detection. Therefore, 
generally speaking, the proposed method is robust to image variations. 

Apart from the robustness to image variations, the performance of 
the proposed method on healthy patients is also considered. We 
collected another 5 XCA sequences from patients without stenosis and 
tested the proposed method on them. The results demonstrate that the 
proposed framework does not generate any false detections. 

3.6. Computational analysis 

The proposed algorithm is implemented in the TensorFlow frame
work with Python. The computations are completed on a computer with 
a 4-core 2.4 GHz Intel Xeon E5-2630 v3 processor and a single Nvidia 
Titan X Pascal GPU. It takes U-Net 0.035 s to generate the segmentation 
results and the DSSD 0.040 s to generate the detection results for a single 
frame. The XCA sequences have an average length of 50 frames, so the 
algorithm requires 1.75 s for U-Net segmentation, 0.21 s for the selection 
of 11 contrast-filled frames, 0.44 s for single-frame detection and 0.49 s 
for sequence false positive suppression to process an XCA sequence. The 
total computation time is 2.89 s. 

3.7. Comparison with existing methods 

We compare our method with some of the existing methods for ste
nosis detection. Since related works based on XCA are limited and CTA is 
also a common tool for stenosis detection in clinical practice, the com
parison includes CTA based methods. Considering that the detection 
result is more important than the imaging technique when diagnosing, 
we believe this comparison is of practical significance. The methods 
reported by Shahzad et al. [2] and Broersen et al. [4] are two 
outstanding methods from the 2012 MICCAI Challenge [31] that detect 
stenosis based on CTA while the one by Compas et al. [9] is based on 
XCA. Zreik et al. [5] recently proposed a new method based on recurrent 
neural network. Table 3 shows the comparison of these methods. The 
proposed method is superior in both the sensitivity and PPV. Further 
analysis can be found in chapter 4.3. 

4. Discussion 

4.1. Analysis of the weak temporal persistence of false positives 

Fig. 10 (a) shows the DSSD network results of 8 single, consecutive 
frames from one XCA sequence. It can be observed that the true stenosis 
is consistently detected, while false positives might be quite different 
even in neighboring frames. In other words, false positives have weak 
temporal persistence. We analyze this phenomenon and offer explana
tions. True stenoses usually have relatively strong feature representa
tions on X-ray angiograms, such as the unexpected narrowing of the 
vessels and grayscale value variations compared with neighboring 
vascular areas. Therefore, they are relatively easier to be detected 
regardless of the complex variations such as vascular structure motion or 
contrast agent flow in an XCA sequence, showing good temporal 
persistence. In contrast, false positives have weaker features. They exist 
because the detector is interfered with by factors such as curved vessels 
and ribs in the background. However, these interference factors vary 
across frames, generating different false positives. For example, a false 
positive caused by instantaneous contrast agent inhomogeneity might 
appear only in one frame, while a false positive caused by vessel motion 
only appears in another frame. Therefore, in the DSSD network results, 
false positives seem to appear irregularly. In conclusion, false positives 
are sensitive to variations in the XCA sequence, which makes them have 
weak temporal persistence. This phenomenon also inspires us to exploit 
temporal information and suppress false positives. 

4.2. Analysis of parameter selection 

The proposed framework has many parameters, and we divide them 
into two categories. The first category refers to the traditional parame
ters for building the detection network, for example, the aspect ratios, 
Tpos� iou, and loss function weight. Among them, we specifically discuss 
the influence of Tpos� iou and its important function. Tpos� iou is an IoU 
threshold determining whether a default box is positive or not. If we 

Fig. 11. Robustness test results under different contrast and brightness levels (frame #5 in Fig. 10).  

Table 3 
Quantitative comparison of the stenosis detection methods measured by the 
sensitivity (SN), positive predictive value (PPV) and F1-score.  

Method SN PPV F1-score 

Shahzad et al. 54.1% 26.8% 35.8% 
Broersen et al. 27.7% 30.9% 29.2% 
Compas et al. 86.4% 57.6% 69.1% 
Zreik et al. 80.0% 70.6% 75.0% 
Proposed method 87.2% 79.5% 83.2%  
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increase Tpos� iou, fewer positive bounding boxes will be generated. 
Therefore, the average distance between positive boxes and their cor
responding ground truth will be smaller, which will make position 
regression easier. However, it might also lead to network overfitting 
since the number of regression targets decreases. Conversely, if we 
decrease Tpos� iou, the number of positive boxes will increase. More 
default boxes that are far away from the ground truth will be considered 
positive, which is harmful to the classification performance of the 
network. We set Tpos� iou to 0.5 in our experiment, which has been 
validated as effective in many existing object detection frameworks. 
Further research into the adjustment of Tpos� iou, together with other 
traditional parameters, will be conducted as future work of this study. 

The second category refers to the unique parameters in the designed 
module. Among them, we think Ncf and Nsf of the seq-fps module are the 
most important. Ncf decides how many contrast-filled frames will be 
selected for temporal processing and Nsf decides whether a box linkage 
generated by the seq-fps module should be preserved. If we decrease Ncf 
or Nsf , we weaken the temporal constraint from the X-ray sequence and 
the temporal detection approaches single-frame detection. Therefore, 
the number of missed stenoses will be reduced, but the number of false 
detections will increase. Conversely, if we increase Ncf or Nsf , false 
negatives will become the major problem. Larger values will involve 
more uncertainties for temporal processing and require more accurate 
former DSSD network results. Theoretically, Ncf can cover all contrast- 
filled frames and Nsf can be equal to Ncf . However, such a selection 
might not be reasonable due to its extremity. In chapter 3.4, we have 
offered a theoretical basis for reasonable Ncf and Nsf selection: a whole 
cardiac cycle must be observed. A further cross-validation experiment is 
conducted to determine their specific values. Variations in the experi
mental results with different parameter combinations in Fig. 9 have 
confirmed our analysis above and demonstrate that Ncf ¼ 11 and Nsf ¼ 8 
is the best parameter combination that achieves good sensitivity while 
suppressing false positives. 

4.3. Analysis of the comparison experiment 

Among the comparison methods, the methods reported by Shahzad 
et al. [2], Broersen et al. [4] and Compas et al. [9] are similar; all of 
which detect stenosis by measuring vessel diameters. Vascular structures 
are enhanced and segmented with various traditional algorithms, and 
then the vessel diameters are measured along the centerline. A stenosis 
is identified where the diameter has an abnormally small value. 
Therefore, the final detection result is highly dependent on the pre
processing results. Inaccurate segmentation results easily lead to false 
positives and the three methods have relatively low PPVs: 26.8% [2], 
30.9% [3], and 57.6% [4], respectively. The method proposed by Zreik 
et al. [5], a relatively new method, extracts patches along the centerline 
and uses a recurrent neural network to generate features for identifying 
stenosis. It obtains good results while achieving a balance between the 
sensitivity (80.0%) and PPV (70.6%). However, with this method, the 
original curved coronary arteries are straightened with medical soft
ware. This structural variation might produce potential errors. In the 
proposed method, we deal with stenosis detection in a different way by 
treating it as an object detection task. For a single X-ray angiogram, the 
detection is directly conducted on the raw image by an object detection 
network without preprocessing procedures in other comparison 
methods. Moreover, we have tried to exploit the temporal information of 
the XCA sequence and designed the seq-fps module, which greatly 
suppresses false positives. Finally, the proposed method outperformed 
other comparison methods, achieving relatively higher sensitivity of 
87.2% and PPV of 79.5%. 

5. Conclusions 

Automatic detection of coronary artery stenosis in X-ray angiograms 

is a significant but challenging task. In this study, we present a deep 
learning-based method with temporal constraints on the X-ray se
quences to detect stenosis. U-Net selects contrast-filled frames that are 
most beneficial for subsequent stenosis detection. The DSSD then offers 
rough detection results for these single frames, which reveals high 
sensitivity. However, false positives still exist. The seq-fps module ex
ploits the temporal information of the XCA sequence to suppress false 
positives and generate the final results. The proposed method achieves 
sensitivity of 87.2% and PPV of 79.5%, outperforming existing methods. 
The experimental results demonstrate that the proposed method has the 
potential to establish a computer-aided diagnosis system to automati
cally detect stenosis, assisting clinical examinations. 

Considering the limitations of this study, future works are threefold. 
First, we will establish a larger dataset by cooperating with more hos
pitals to collect clinical data with more variations. Second, we will 
further improve the robustness of the proposed method by performing 
research into parameter selection and even developing a self-adaptive 
method, which will help the proposed framework address the complex 
variations in the clinical environment. Finally, we will pay attention to 
not only the existence but also the property and degree of a stenosis. 
These findings will lead to SYNTAX score [32], which is an important 
index in clinical diagnosis. 
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