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The segmentation of coronary arteries in X-ray angiograms by convolutional neural networks (CNNs) is
promising yet limited by the requirement of precisely annotating all pixels in a large number of training
images, which is extremely labor-intensive especially for complex coronary trees. To alleviate the burden
on the annotator, we propose a novel weakly supervised training framework that learns from noisy
pseudo labels generated from automatic vessel enhancement, rather than accurate labels obtained by
fully manual annotation. A typical self-paced learning scheme is used to make the training process robust
against label noise while challenged by the systematic biases in pseudo labels, thus leading to the
decreased performance of CNNs at test time. To solve this problem, we propose an annotation-refining
self-paced learning framework (AR-SPL) to correct the potential errors using suggestive annotation. An
elaborate model-vesselness uncertainty estimation is also proposed to enable the minimal annotation
cost for suggestive annotation, based on not only the CNNs in training but also the geometric features
of coronary arteries derived directly from raw data. Experiments show that our proposed framework
achieves 1) comparable accuracy to fully supervised learning, which also significantly outperforms other
weakly supervised learning frameworks; 2) largely reduced annotation cost, i.e., 75.18% of annotation
time is saved, and only 3.46% of image regions are required to be annotated; and 3) an efficient interven-
tion process, leading to superior performance with even fewer manual interactions.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Coronary artery disease (CAD) is one of the leading causes of
death globally [1]. It is primarily caused by obstructive atheroscle-
rotic plaque [2], which narrows the inner wall of coronary artery
and decreases normal myocardial perfusion, leading to symptoms
such as angina and even myocardial infarction [3]. Percutaneous
coronary intervention (PCI) is a minimally invasive surgery to
effectively treat CAD in clinical practice. In such a procedure, a car-
diologist delivers a catheter with a premounted stent through
coronary arteries to the stenosis lesion. Once the lesion is reached,
the stent is deployed against the narrow coronary wall by inflating
the delivery balloon. Since target vessels are not directly visible,
PCI is performed under image guidance by using X-ray angiogra-
phy to visualize coronary arteries for the injection of radiopaque
contrast agent. The accurate segmentation of vessels in X-ray
angiograms (XAs) enables the quantitative analysis of coronary
trees [4] and is fundamental for the safe navigation of intervention
devices for PCI surgery.

Deep learning with convolutional neural networks (CNNs) has
achieved the state-of-the-art performance for medical image seg-
mentation [5–7], including vessel segmentation in XA [8,9]. Fol-
lowing the fully supervised learning framework, its success relies
heavily on a large amount of precise annotations for all pixels in
training images to improve generalization capability for unseen
testing images. However, precisely annotating coronary arteries
is costly and requires special expertise, especially for thin branches
with tubular appearance and low contrast in XA. To alleviate such
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heavy annotation burden on the annotator, reducing the amount of
precise manual annotations is highly demanded in clinical practice
[10]. In contrast, obtaining noisy pseudo labels appears to be less
expensive. Specifically, vessel enhancement [11] automatically
extracts vascular structures based on handcraft priors [12], provid-
ing a feasible method for generating pseudo labels for training
CNNs without any manual interaction. This can largely reduce
the manual annotations required for model training, while leading
to noise with systematic biases in pseudo labels for structures,
such as bifurcation points and thin vessels with small scales, as
shown in Fig. 1. These noisy pseudo labels challenge the learning
process and cause performance degradation of CNNs at test time
[13]. It is desirable to develop a robust training framework against
systematic label noise and facilitate segmentation performance
close to the fully supervised learning framework.

Aimed at robustly learning from noisy labels, some previous
weakly supervised training frameworks model label noise explic-
itly as an additional network layer [14–16] or implicitly using prior
knowledge [17,18]. Among them, researchers have shown that the
self-paced learning paradigm can be substantially effective and
scalable [19], owing to its predefined self-paced regularizer [20].
This learning paradigm typically assumes a plain distribution of
label noise without systematic biases to specific segmentation
regions and semantic categories. An iterative optimization process
is used to facilitate noise robustness of the model. In each iteration,
the self-paced regularizer progressively selects only easy pixels
while excluding difficult pixels with potential label noise from
model training. Noisy labels are modified automatically by updat-
ing the segmentation results of training images based on the cur-
rent model. They are expected to contain fewer errors than those
in previous iterations, providing improved supervision for the next
iteration. Unfortunately, this self-paced learning paradigm may
make the model overfit on easy pixels, leading to a poor generaliza-
tion performance at test time. Moreover, the noise in pseudo labels
often contains specific biases due to the inherent limitations of
vessel enhancement-based generation process. Using this naive
self-paced learning paradigm alone has only the limited ability to
correct the erroneous pseudo labels.

Manually detecting and correcting potentially erroneous
pseudo labels is a practical way to avoid the self-paced learning
being corrupted by systematic errors, while it is still labor-
intensive and time-consuming. Suggestive annotation [21] has
been shown to be a more efficient method for interactive refine-
ment by intelligently selecting a small number of the most valu-
able pixels and then querying their labels. It suggests the
annotator accurately label only the most uncertain pixels with
potentially incorrect labels [22], commonly based on the widely
used model uncertainty [23], i.e., the entropy of CNNs. The
required annotation cost can be successfully reduced owing to
the effective exploration of potential errors. However, model
Fig. 1. Noisy pseudo labels generated from vessel enhancement, where the
systematic errors are highlighted by yellow arrows. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
uncertainty fails to exploit geometric features derived directly
from training images, resulting in redundancy among queries
[24,25] and a low efficiency for manual interaction. In contrast,
considering the vesselness of pixels is expected to lead to more
context-aware uncertainty estimation as it takes advantage of vas-
cular geometric features. Since the model uncertainty and vessel-
ness uncertainty are complementary, we believe that their
combination would provide more reliable uncertainty estimation
that efficiently guides user interaction in suggestive annotation.

To solve these problems, this paper develops a novel weakly
supervised vessel segmentation framework, which learns from
cost-free but noisy pseudo labels generated from automatic vessel
enhancement. Specifically, to overcome noisy pseudo labels with
systematic biases, we propose to progressively guide the naive
self-paced learning with auxiliary sparse manual annotations,
which is called annotation-refining self-paced learning (AR-SPL).
AR-SPL not only exploits the available knowledge from noisy
pseudo labels, but also corrects potential errors using their corre-
sponding manual annotations. These manual annotations, even
when sparse in training images, play an important role in hedging
the risk of learning from noisy pseudo labels. Furthermore, to
enable a minimal set of annotations, we propose a model-
vesselness uncertainty estimation for suggestive annotation, which
dynamically and compactly takes into account the trained CNN and
the geometric features of coronary arteries in XAs.

1.1. Contributions

The contributions of this work are threefold.

� First, we propose a novel weakly supervised learning frame-
work in the context of vessel segmentation, aiming to safely
learn from noisy pseudo labels generated by vessel enhance-
ment without performance deterioration at test time.

� Second, to deal with the biased label noise, we develop online
guidance for the naive self-paced learning based on sparse man-
ual annotations, which is crucial for a significant segmentation
performance boost.

� Third, towards minimal manual intervention, we propose a cus-
tomized vesselness uncertainty based on vascular geometric
feature, and then couple it with the widely used model uncer-
tainty by a dynamic tradeoff for more efficient suggestive
annotation.

Experiments demonstrate the effectiveness and efficiency of the
proposed framework, where only a very small set of manual anno-
tations can lead to an accurate segmentation result that is compa-
rable to the fully supervised learning.

1.2. Related works

1.2.1. Vessel segmentation in XA
In the past two decades, a wide range of methods have been

proposed to segment coronary arteries in XAs, including the active
contour model [26], level set [27] and random walker [28]. Most of
these methods are semi-automatic and sensitive to the initializa-
tion of interaction, leading to the lack of robustness and accuracy
when faced with nununiform illumination and opaque background
structures. Recently, vessel segmentation in XAs has been domi-
nated by deep learning with CNNs, such as a multiscale CNN archi-
tecture [8] with fully convolutional connections and a multistage
framework [9] to reduce motion artifacts in the background. How-
ever, they all follow the fully supervised learning scheme, which
requires precise annotations for all pixels in a large number of
training images. To the best of our knowledge, in the context of
vessel segmentation, there is no previous perspective that focuses
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on weakly-supervised learning from noisy labels, i.e., generated by
vessel enhancement [11].

1.2.2. Learning from noisy labels
For deep learning with CNNs, noise in training labels inevitably

leads to performance degradation at test time [13]. How to
improve robustness of CNNs when learning from noisy labels is
worthy of exploration. This challenge is especially significant yet
under-studied for medical image analysis. An explicit noise model
is constructed in [14] to overcome the unreliable noisy annotations
for breast lesion, which uses a constrained linear layer [15] and a
noise adaptation layer [16]. Some other works implicitly treat
noisy labels as statistical outliers based on prior knowledge. For
example, perceptual consistency proposed in bootstrapping [17]
is used to augment and modify noisy labels to mitigate their poten-
tial degradation. This consistency-based prior knowledge further
inspires the label-noise-robust method [29] for cardiac and glioma
segmentation in MRI, where model updating is only performed on
data samples with inconsistent predictions in the two-stream
module. Learning difficulty is another prior knowledge to identify
noisy samples and then down-weight them during training.
Pixel-wise down-weighting strategy shows robustness for highly
inaccurate annotations for skin lesion segmentation [18] and tho-
racic organ segmentation [30]. Towards higher effectiveness and
scalability, self-paced learning [20,19,31] uses a curriculum setting
(also called self-paced regularizer), where learning difficulty is
updated in parallel with network parameters via alternating opti-
mization. Despite an elegant theoretical proof, these methods fail
to fit the intractable label noise in vessel enhancement, which
exhibits more complicated and systematic characteristics.

1.2.3. Suggestive annotation with uncertainty estimation
Suggestive annotation [21] is proposed to choose partial train-

ing data for labeling, aimed at a better model performance given
a limited annotation budget. In general, there are two main types:
geometry sampling and uncertainty sampling. Geometry sampling
queries samples based on the geometric distribution of training
data, such as representativeness [32] among unlabeled samples
and diversity [33] from labeled samples. However, these distribu-
tion measures are challenged by the highly imbalanced foreground
and background in XAs. In addition, uncertainty sampling queries
the most uncertain samples for their labels commonly based on
model uncertainty [23], which is also called epistemic uncertainty
for CNNs. The accurate estimation of model uncertainty relies on
the computationally infeasible Bayesian networks, which can be
approximated using Monte Carlo sampling with dropout at test
time [23]. Model uncertainty proves a strong relationship with pre-
diction errors [22] and thus a promising ability to reduce manual
annotations, while it is limited by redundant queries especially
during an early training stage [24,25]. To the best of our knowl-
edge, to overcome this drawback, this paper is the first work to
take into account the geometric vascular feature for uncertainty
estimation, which acts as an auxiliary cue for the commonly used
model uncertainty.
1 During PCI, a cardiologist commonly acquires an XA sequence rather than one
single XA frame, recording the inflow and fade of contrast agent through coronary
arteries. However, only the key frame with the contrast-filled vessels is used for
segmentation in this study.
2. Method

The proposed weakly supervised training framework is
depicted in Fig. 2. It consists of three major parts: (A) pseudo label
generation based on automatic vessel enhancement; (B) an
annotation-refining self-paced learning framework (AR-SPL) that
learns from pseudo labels with online manual refinement based
on sparse annotations; and (C) suggestive annotation with
model-vesselness uncertainty estimation to enable minimal anno-
tation cost for sparse annotations. Our framework is flexible
because it imposes few assumptions on network structure and
can be compatible with any popular CNN-based segmentation
backbone. Once this training process is completed, a testing pro-
cess obtains segmentation prediction by performing forward-
propagation without human interactions.

2.1. Pseudo label generation

Although precise labels are fundamental for training a CNN for
vessel segmentation, it is highly laborious to obtain them by man-
ually annotating all pixels in a large number of training images.
Vessel enhancement provides a cost-free but noisy alternative for
precise labels, called pseudo labels, so as to largely reduce annota-
tion cost as compared with fully manual annotation. It extracts
coronary arteries automatically yet coarsely from background,
returning a vesselness map that quantitatively measures vascular
structures.

Towards a comprehensive leverage of temporal and appearance
priors of coronary arteries, layer separation [11] is a promising
method for vessel enhancement, which separates the original XA
into three independent layers, such as a large-scale structure layer,
a quasi-static background layer and a vessel layer that contains
coronary arteries. Specifically, we first subtract the large-scale
structure layer from the original XA by a morphological closing
operation, and obtain a difference image containing the target
coronary arteries and residual quasi-static background structures
with small scales. Then, robust principle component analysis
(RPCA) [12] is used to further separate the difference image into
a quasi-static background layer and a vessel layer based on the
quasi-static motion constraint and sparse appearance constraint,
respectively. For each training image xi, in order to take advantage
of the beneficial temporal cue, layer separation is performed offline
on the entire temporal sequence Xi, which contains xi as a
contrast-filled frame.1 The decomposition of the vessel layer
sequence Si and background layer sequence Li via RPCA is formu-
lated as follows:

min
Li ;Si

Lik k� þ n Sik k1 s:t: DIi ¼ Li þ Si ð1Þ

where DIi is the sequence of difference images acquired by the mor-
phological closing operation on Xi. �k k� and �k k1 are the nuclear
norm and l1 norm, respectively. The regularization parameter n con-
trols the tradeoff between them, indicating the capability of extract-
ing candidate coronary arteries in the separated vessel layers.
Objective function Eq. (1) has proven to be convex and can be
solved by an inexact augmented Lagrange multiplier method [34].

After the RPCA decomposition, the separated vessel layer si is
treated as the vesselness map for xi by selecting the corresponding
frame from Si. Finally, we apply the Otsu thresholding to si, gener-
ating the pseudo label yi (an example is shown in Fig. 3) that will
be used in the following AR-SPL to train a CNN for vessel
segmentation.

2.2. Annotation-Refining Self-Paced Learning (AR-SPL)

Pseudo labels are obtained automatically by vessel enhance-
ment based on handcrafted priors in layer separation, which leads
to inevitable noise due to complex background and inhomoge-
neous contrast inflow. These systematic rather than random label
noise may deteriorate the training of CNN for vessel segmentation
if no additional strategies are applied.



Fig. 2. Flow chart of the proposed weakly supervised training framework, which consists of three modules: (A) pseudo label generation; (B) annotation-refining self-paced
learning framework (AR-SPL); and (C) suggestive annotation with model-vesselness uncertainty estimation.

Fig. 3. An example of pseudo label generated from layer separation on the original
XA.
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2.2.1. Naive self-paced learning scheme
We adopt a self-paced learning scheme [20] to overcome the

negative effect of label noise on model training. It is inspired by
the cognitive processes of humans and animals, where a CNN is
learned gradually from pixels ranked in descending order of learn-
ing difficulty while excluding difficult pixels with potentially noisy
labels. This progressive training paradigm enables the model train-
ing to focus on easy pixels whose labels have a higher chance to be
correct. Formally, consider the vessel segmentation task in XAs
with a training set x1; y1ð Þ; � � � ; xm; ymð Þf g, where xi 2 Rn denotes
training image xi with n total pixels and yi 2 0;1f gn denotes its cor-
responding binary noisy pseudo labels obtained from vessel
enhancement. We formulate the self-paced learning scheme as a
minimization problem:

argmin
V ;Y ;W

Xm
i

viL yi;U xijWð Þð Þ þ f V ; s; cð Þ þ kkWk2

s:t: V 2 0;1½ �n�m

ð2Þ

where W denotes the model parameters of the CNN.
V ¼ v1;v2; . . . ;vm represents the latent weights for all m training
images, in which vi 2 0;1n is related to pixel-wise learning difficulty
for xi. It is empirically initialized based on the obtained vesselness
maps, as described in Section 3.2. Intuitively, the easier a pixel is,
the less likely it is to have label noise: a higher latent weight should
be assigned in this case. This relationship is formulated as a self-
paced regularizer f V ; s; cð Þ ¼ �skVk1 � ckVk2;1,2 where the easiness
2 It exhibits better performance than other state-of-the-art self-paced regularizers
as shown in Supplementary Materials.
,

term (the negative l1 norm: �kVk1 ¼ �Pm
i vik k1) implicitly models

the relationship between learning difficulty and latent weight, and
the diversity term [35] (the negative l2;1 norm
�kVk2;1 ¼ �Pm

i vik k2) improves diversity between latent weights
for more comprehensive knowledge. s and c are hyperparameters
imposed on these two terms, which control the learning pace during
model training. In addition, Y ¼ y1; y2; . . . ; ym are called self-paced
labels, where yi is initialized by the original noisy pseudo label yi

and acts as an online modified version for noise reduction. U xijWð Þ
denotes a probability segmentation prediction of xi by a discrimina-
tive function, i.e., the softmax layer of the CNN parameterized by W .
The cross-entropy loss between it and yi is denoted by L yi;U xijWð Þð Þ,
and it is weighted by vi as the first term in Eq. (2). This involvement
of the awareness of learning difficulty in model training improves
the robustness against label noise. Finally, we impose an l2 regular-
ization on W weighted byk to avoid model overfitting, as shown by
the third term in Eq. (2).

Objective function Eq. (2) can be minimized by alternating min-
imization strategy [20], where W;Y and V are alternatively mini-
mized one at a time, while the other two are fixed. The
minimization in iteration k consists of the following steps:
W kð Þ ¼ argmin
W

Xm
i

v k�1ð Þ
i L y k�1ð Þ

i ;U xijWð Þ
� �

þ kkWk2 ð3Þ

Y kð Þ ¼ argmin
Y2 0;1f gn�m

Xm
i

L yi;U xijW kð Þ
� �� �

ð4Þ

V kð Þ ¼ argmin
V2 0;1½ �n�m

Pm
i viL y kð Þ

i ;U xijW kð Þ
� �� �

� s vik k1
�c vik k2

ð5Þ

The superscript kð Þ represents the iteration index in alternating
minimization. When Y and V are fixed, the optimization of W (Eq.
3) is converted to the minimization of the sum of a weighted loss
function and a regularization term, which can be typically solved
by back-propagation. When W and V are fixed, the optimization
of Y (Eq. 4) is regarded as a model prediction problem and is solved
by forward-propagation on the CNN with the optimal parameter

W kð Þ derived from Eq. (3). When W and Y are fixed, the
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optimization of V (Eq. 5) can be accomplished by SPLD algorithm
[35]: pixels in each image are first sorted in ascending order of
their losses and then assigned latent weights based on a threshold

sþ c=
ffiffiffi
o

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
o� 1

p� �
with respect to s; c and rank index o. Specif-

ically, pixel j in xi with loss less than the threshold is selected as an

easy pixel and is involved in training via assigning v kð Þ
i;j ¼ 1. Other-

wise, it will not be included via assigning v kð Þ
i;j ¼ 0. The CNN is fur-

ther trained in the next iteration kþ 1 using only the selected easy

pixels by weighting the loss function with V kð Þ. Fig. 4 shows some
examples of self-paced labels and latent weights, i.e., in iteration 1,
2 and 3 of alternating minimization.
Fig. 5. Illustration of sparse annotation-based manual refinement. (a) depicts the
sparse annotations for a small number of pixels bounded by purple dash lines,
where foreground and background annotations are colored in red and green,
respectively. (b)!(c) and (d)!(e) depict the manual refinement for self-paced
labels and latent weights. The refinement is performed only for the annotated
region, where self-paced labels are updated with sparse annotations, and latent
weights are updated with a constant x.
2.2.2. Sparse annotation-based manual refinement
Naive self-paced learning scheme demonstrates the robustness

for random label noise [20], while it is hampered by systematic
errors from vessel enhancement with specific biases to structures,
such as thin and terminal branches with attenuated inflow of con-
trast agent. Focusing only on easy pixels, the weighted loss func-
tion Eq. (3) may have a risk of ignoring systematic biases in
noisy labels and thus lose crucial pixels for improving essential
generalization capability. This leads to a poor segmentation model
with suboptimal W and ruins the following alternating minimiza-
tion steps. In particular, based on the current model, Eq. (4) is dom-
inated by easy pixels previously selected by the self-paced
regularizer, maintaining and even amplifying systematic errors in
the self-paced labels, as shown in Fig. 4. These systematic errors
further misguide the model training in the next iteration, leading
to irreversible performance deterioration at test time. Following
the naive self-paced learning scheme, systematic errors are hardly
explored and corrected if no auxiliary refinement strategy is
applied.

Manual proofreading over the whole image is a practical way to
detect and correct errors, while it leads to substantial labor costs
for a large number of nonerror regions. Different from this labor-
intensive process, we propose a cost-effective AR-SPL framework
that performs an online local manual refinement based on sparse
annotations to guide the naive self-paced learning, i.e., only a small
number of valuable pixels with potentially incorrect labels are
annotated and then manually refined in each iteration of alternat-
ing minimization during model training. Specifically, given sparse
annotations for a small portion of pixels in training image (Fig. 5
(a)), manual refinement is performed only for the annotated region
while the non-annotation region remains unchanged. In the anno-
tated region, self-paced labels are updated with sparse annota-
tions, as depicted in Fig. 5(b)!(c). Moreover, the latent weights
in the annotated region are increased to a constant x > 1, as
Fig. 4. Examples of self-paced labels and latent weights in iterations 1;2 and 3 of
alternating minimization for the naive self-paced learning. Note that the systematic
errors are maintained and even amplified, as highlighted by the orange arrows. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
depicted in Fig. 5(d)!(e), since sparse manual annotations are
expected to more substantially impact model updating. Owing to
the paired manual refinements, the proposed AR-SPL provides a
promising way to guide the naive self-paced learning to effectively
overcome systematic label noise. However, there is still a problem
remaining: how to determine the sparse annotations that concen-
trate on a small number of valuable pixels with potentially incor-
rect labels, in order to minimize manual intervention as much as
possible. This can be solved by suggestive annotation with
model-vesselness uncertainty estimation, as introduced in
Section 2.3.

2.2.3. Convergence discussion
Under some suitable assumptions, we show in Theorem 1 that

the proposed AR-SPL with manual refinement can converge stably
to a stationary point. The theoretical proof is appended in Supple-
mentary Materials. We show a detailed characterization of the sta-
bility of model parameters during training since it is the only
relevant variable at test time. The experimental results in Sec-
tion 3.4 also demonstrate that when manual annotations are grad-
ually involved, the model achieves a higher segmentation
performance and finally reaches a convergent result. In addition,
following a similar argument, Theorem 1 can be easily extended
to imply the stability of latent weight and self-paced label,
respectively.

Theorem 1. Denote the objective function in Eq. (2) as F W;Y ;Vð Þ.
Let a unified optimization method, i.e., scholastic gradient descent with
learning step ak, be used to solve Eq. (3)–(5) in iteration k of
alternating minimization. Let ak satisfy

P1
k¼0ak ¼ 1 andP1

k¼0a2
k < 1. Then, limk!1E rWF W kð Þ;Y kð Þ;V kð Þ

� ���� ���
2

h i
¼ 0.
2.3. Suggestive annotation with model-vesselness uncertainty
estimation

In each iteration of AR-SPL, suggestive annotation is performed
in two steps to achieve sparse annotations for manual refinement:
i) intelligently querying a small number of valuable pixels for their
labels from a large pool of unlabeled pixels; and ii) mixing the
newly labeled pixels with the previously labeled ones.
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2.3.1. Batch-mode suggestive annotation
In principle, classical suggestive annotation chooses one single

unlabeled sample each time [24,25], such as a pixel for the seg-
mentation task, to query its label. However, it is not feasible
enough in our work since one single queried pixel may not make
a statistically significant impact on model updating. Moreover,
labeling pixels in isolated positions one-by-one is intractable for
the annotator as compared with labeling them in a localized
image patch, i.e., a superpixel. Therefore, we perform suggestive
annotation in batch mode at superpixel level for interaction effi-
ciency. For each training image, a small number of unlabeled
superpixels with the highest uncertainties are queried. Then the
annotator only needs to provide pixel-wise labels for these quer-
ied superpixels rather than the entire image. Therefore, these
annotator-provided pixel-wise labels for queried superpixels are
regarded as sparse annotations and used for manual refinement,
as depicted in Fig. 5.

Formally, let image xi be separated into a large number of
superpixels that are denoted by a universal set Pi. In iteration k

of AR-SPL, let Q kð Þ
i denote a set of superpixels that need to be quer-

ied and annotated. Only Nb superpixels (the query batch size) from
the unlabeled pool with the highest uncertainties should be

included in Q kð Þ
i for sparse annotation:

Q kð Þ
i ¼ qjq 2 Pi � Q �

i ;U
kð Þ
i;q P C Nbð Þ

n o
ð6Þ

where Q �
i ¼ Q 1ð Þ

i [ Q 2ð Þ
i [ � � � [ Q k�1ð Þ

i represents the labeled super-
pixels in the total previous k� 1 iterations. Pi � Q �

i is the unlabeled
pool obtained by excluding Q �

i from Pi, and we select superpixel q

from it to generate Q kð Þ
i . Furthermore, U kð Þ

i;q measures the uncertainty
for q in xi. C Nbð Þ is the Nb-th highest uncertainty among all super-
pixels. The selected q should also have the top Nb uncertainty in

xi, which satisfies U kð Þ
i;q P C Nbð Þ. Finally, all pixels in Q kð Þ

i are labeled

as sparse annotations and then added to the previously labeled Q �
i

for manual refinement in AR-SPL, in order to avoid catastrophic for-

getting [36] of CNNs. Uncertainty estimation U kð Þ
i;q is regarded as a

key for the selection of Q kð Þ
i and will be described in the next

subsection.

2.3.2. Model-vesselness uncertainty estimation
Towards manual refinement specific for errors in current self-

paced labels, uncertainty estimation is desired to indicate potential
mis-segmentations [22], which can be achieved with a widely used
model uncertainty using Monte Carlo sampling with dropout
(MCDO) [23]. For this, in iteration k of AR-SPL, we first activate
the dropout operation in model inference and perform D times
forward-propagations, leading to D-fold binary prediction results.
Then, the model posterior expectation is obtained by averaging
over them:

E kð Þ
i;j ¼ 1

D

XD
d

~y kð Þ
i;j ð7Þ

where E kð Þ
i;j denotes the model expectation for xi;j (pixel j in xi).

~y kð Þ
i;j ¼ ~U xi;jjW kð Þ

d

� �
is the binary prediction for xi;j, where W kð Þ

d

denotes the model parameter W kð Þ after applying dropout in MCDO

pass d. Furthermore, model uncertainty M kð Þ
i;j is estimated as the

entropy over E kð Þ
i;j :

M kð Þ
i;j ¼ � 1

�Zi

E kð Þ
i;j log E kð Þ

i;j ð8Þ
where �Zi ¼ max
j

E kð Þ
i;j log E kð Þ

i;j is the normalization parameter to make

M kð Þ
i;j range from 0 to 1.
Despite the strong relationship with potential mis-

segmentations, model uncertainty leads to redundant queries
which limit the intervention efficiency, especially for the model
training at early stages, due to the absence of geometric features
of coronary arteries. Vesselness measure generated from vessel
enhancement is regarded as a customized geometric feature for
vascular structures, which can be used to define vesselness uncer-
tainty Gi;j:

Gi;j ¼ � 1bZi

si;j 1� si;j
� � ð9Þ

where si;j represents the vesselness measure from Section 2.1, andbZi ¼ max
j

si;j 1� si;j
� �

is the normalization parameter. Eq. (9) is for-

mulated as a quadratic function [37] rather than a widely used
entropy term, considering the distribution difference between si;j
and E kð Þ

i;j .
To leverage the complementary strengths of these two uncer-

tainty estimations, we propose a novel model-vesselness uncer-
tainty that is a combination of them. It is formulated at
superpixel level for the batch-mode suggestive annotation in iter-
ation k of AR-SPL:

U kð Þ
i;q ¼ 1

Nq

X
j2q

max gGi;j; 1� gð ÞM kð Þ
i;j

� �
ð10Þ

where U kð Þ
i;q denotes the proposed model-vesselness uncertainty for

superpixel q in xi, and Nq represents the total number of pixels in
it. This hybrid uncertainty calculates a weighted maximization of
model uncertainty and vesselness uncertainty and then averages
over all pixels in q. The weight g controls a tradeoff between them,
which requires an elaborate design for the best combination. Specif-
ically, vesselness uncertainty provides a context-aware cue for sug-
gestive annotation. It exhibits more advantages for an early training
stage where model uncertainty is unreliable due to the inaccurate
predictions based on a coarse segmentation model. However, ves-
selness uncertainty cannot discover which pixels are actually essen-
tial for further model fine-tuning, leading to decreased convergent
performance. In contrast, model uncertainty indicates ambiguous
regions with respect to the segmentation model. It allows for better
exploration of potentially incorrect labels [22], leading to an accu-
rate and stable segmentation performance for model convergence.
Motivated by these observations, we design a dynamic time-
dependent weight g, regarded as a soft switching strategy between
these two uncertainties during the entire training process:

g ¼ 1� h k� 1ð Þ; k < 1þ 1=hð Þ
0; otherwise

�
ð11Þ

where h denotes the decay rate and k is the training iteration index.
With this dynamic tradeoff, the proposed model-vesselness uncer-
tainty emphasizes vesselness uncertainty more in the early training
stage for a fast performance improvement, while biasing to model
uncertainty in the later stage for an accurate convergent
performance.

3. Experiments and results

3.1. Dataset and evaluation metrics

We collected 191 clinical XA sequences of 30 patients with
frame rate 15 fps, frame size 512� 512 and pixel size 0:3� 0:3
mm2 using a Philips UNIQ FD10 C-arm system from Peking Union
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Medical College Hospital in China. Among them, multiple
sequences were acquired for each patient from multiple viewing
angles to overcome the foreshortening of angiographic projection.
XA sequences recorded the whole vessel angiography procedure
from the inflow to the wash-out of the injected contrast agent,
with total frames 41 to 74. During the angiography procedure, only
the key frame depicted the entire structure of coronary tree by fill-
ing the vessel lumen with contrast agent [38]. Therefore, we
selected one contrast-filled key frame from each sequence and
obtained a total of 191 XAs of 30 patients for the following seg-
mentation experiments. Data splitting was performed at the
patient level. We used 112 XAs of 17 patients for training, 25
XAs of 4 patients for validation and 54 XAs of 9 patients for testing.

We developed a PyQT GUI for elaborate vessel annotation. All of
the XAs can be enlarged up to 5� for clear visualization of even
thin branches, and vessel regions were annotated by a laser mouse.
The annotator was an experienced researcher who can accurately
identify coronary arteries, and the annotation quality was further
checked by an expert radiologist for PCI surgery. The annotator
not only labeled superpixels that were queried in training images,
but also provided the vessel ground truth for validation and testing
images. To quantitatively evaluate the segmentation performance,
we measured recall, precision and dice score (which is equal to F1-
score):

Recall ¼ TP= TP þ FNð Þ ð12Þ
Precision ¼ TP= TP þ FPð Þ ð13Þ
Dice Score ¼ 2TP= 2TP þ FN þ FPð Þ ð14Þ
where TP; FN and FP are the numbers of true positives, false nega-
tives and false positives of segmentation results, respectively. Con-
sidering the high class imbalance in XA, dice score provides a
relatively more comprehensive evaluation than recall and precision.

3.2. Implementation details

The proposed weakly supervised learning framework was
implemented in TensorFlow3 with a 4-core 2.6 GHz Intel Xeon Sil-
ver processor, an NVIDIA Titan X (Pascal) GPU and 128 GB RAM.

3.2.1. Pseudo Label Generation
We followed the suggestions from [11] to generate pseudo

labels, e.g., a structural disk element with 20 pixel diameter and
regularization parameter n ¼ 0:8=

ffiffiffi
n

p
, where n is the number of

pixels in a training image.

3.2.2. Annotation-refining self-paced learning
Without loss of generality, we chose the widely used U-Net [5]

as the segmentation model. Dropout with rate 0:2 was used in the
expanding path of U-Net to reduce overfitting and acted as Monte
Carlo sampling for model uncertainty estimation. Note that the
dropout was applied only for model training Eq. (3) and MCDO
Eq. (7) rather than in the testing process, where it would cause
multiplied inference time. Sparse annotation-based manual refine-
ment was performed in each iteration of AR-SPL and finally
stopped at iteration 13 when a convergence threshold was satis-
fied, i.e., the increment of dice score on the validation dataset is
less than 0.05%. During the training process, we first initialized
the self-paced label with the noisy pseudo label obtained from ves-
sel enhancement. Moreover, a soft threshold was empirically
imposed on vesselness map to initialize the latent weight
vi ¼ max 4 si � 0:5j j;1ð Þ. Then, Eq. (3) was optimized with
k ¼ 10�4 by stochastic gradient descent with momentum 0.9, batch
size 16, maximal number of iterations 5000 and initial learning
3 https://www.tensorflow.org
rate 0.01 that was decayed exponentially with power 0.9. For the
optimization of Eq. (5), we synchronously logarithmically
decreased s and c from different initial values s0 and c0 with the
same rate l, i.e. s ¼ � log s0 � lkð Þ and c ¼ � log c0 � lkð Þ, so as
to maintain the stability and scalability of the selection threshold
for cross-entropy loss. The analysis of parameter sensitivity is
appended in Supplementary Materials. It suggests
s0 ¼ 0:75; c0 ¼ 0:20 and l ¼ 0:01 based on a grid search for the
best performance on the validation dataset. Following a similar
grid search manner, we chose x ¼ 5 to emphasize manual refine-
ment for latent weight.
3.2.3. Suggestive annotation with model-vesselness uncertainty
estimation

We utilized the SLIC algorithm [39] to separate each training
image into 3000 superpixels. The query batch size Nb was set to
8 due to its best tradeoff between human-related annotation cost
and model performance, as shown in Supplementary Materials.
Model uncertainty was estimated by 20-fold MCDO and then
dynamically combined with vesselness uncertainty with decay rate
h ¼ 0:4, which was selected based on a grid search for the best val-
idation performance.
3.3. Ablation study

In this section, we conduct an ablation study to investigate the
contribution of each component in the proposed AR-SPL: the
pseudo label generation, the self-paced learning scheme and the
spare annotation-based manual refinement. We compare three
baselines and several model variants that use different compo-
nents in AR-SPL.

� Pseudo label prediction, i.e., a baseline that predicts pseudo
labels (Baseline-PL) based on vessel enhancement for test
images. These pseudo labels are directly regarded as the final
segmentation results without further fed to deep learning-
based training framework.

� Noisy supervision-based training framework [40], i.e., a baseline
that treats pseudo labels as noisy supervision (Baseline-NS) and
then learns directly from them without further refinement
strategies.

� Automatic modification of pseudo labels based on the naive
self-paced learning scheme without manual refinement, i.e.,
deactivation of sparse annotation-based manual refinement in
AR-SPL (AR-SPL-NoAR).

� Manual substitution of pseudo labels with sparse annotations
that are suggested by model-vesselness uncertainty. Only these
sparse annotations are used in model training, which is accom-
plished without the self-paced learning for exploiting pseudo
labels on the fly, i.e., deactivation of the self-paced learning
scheme in AR-SPL (AR-SPL-NoSPL).4

� Fully supervision-based training framework [8], i.e., a baseline
that learns from fully supervision (Baseline-FS) with manual
annotations for all pixels in each training image.

Fig. 6 visualizes the segmentation results on test images
obtained by different methods in the ablation study, zooming in
on the challenging regions for vessels (yellow bounding boxes)
and background with potential disturbance (pink bounding boxes).
Baseline-PL predicts pseudo label as the segmentation result,
which exhibits the obvious false negatives for thin vessel branches
and bifurcation points (in the yellow bounding boxes), as well as
For a fair comparison, to avoid additional annotations for initialization [41,42], we
nly use noisy pseudo labels as a warm-start to obtain the initial segmentation model
nd uncertainty map.
o
a

https://www.tensorflow.org


Fig. 6. Three examples of segmentation results in blue bounding boxes obtained by different counterparts in the ablation study. The true positives, false negatives and false
positives are visualized in green, red and orange, respectively. We zoom in on the challenging regions bounded by yellow and pink boxes, and append them below each case
to highlight the segmentation details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the false positives scattered in semi-transparent background struc-
tures (in the pink bounding boxes). This poor performance indi-
cates that pseudo labels contain noise with systematic biases,
challenging the other components in AR-SPL for learning an accu-
rate segmentation model. For example, Baseline-NS directly learns
from pseudo labels while shows even worse performance than
Baseline-PL due to the overfitting on label noise. AR-SPL-NoAR
and AR-SPL-NoSPL exhibit limited noise robustness, where false
negatives are reduced as compared to Baseline-PL and Baseline-
NS, yet background disturbance seems to be intractable with false
positives even amplified especially for curvilinear background
structures, such as ribs, sternums and vertebrae. Owing to the
incorporation of all proposed components, AR-SPL can effectively
avoid the model training being corrupted by noise in pseudo labels,
leading to the accurate extraction of contrast-filled coronary arter-
ies as highlighted in yellow bounding boxes and the least false pos-
itives for background disturbance in pink bounding boxes. Its
performance is significantly better than other counterparts that
use one single component, and even is visually similar to
Baseline-FS that relies on tedious fully manual annotation.

We show in Table 1 the quantitative evaluations of training
cost and segmentation performance. Training cost consists of the
human-related annotation cost (i.e., the number of annotated
superpixels and their required annotation time for all images in
the entire training process) and the human-free optimization cost
(i.e., the optimization time for updating operations in alternating
minimization Eq. (3)–(5)). Baseline-PL is an unsupervised method
based on pseudo label generation without training process, which
thus requires no annotation cost and optimization cost for model
training. Its low dice score demonstrates that pseudo labels are
highly noisy and would challenge other components in AR-SPL.
Specifically, Baseline-NS shows even worse performance than
Baseline-PL, indicating the overfitting nature of CNNs for label
noise. AR-SPL-NoAR is completely free of manual annotation while
has limited improvement over Baseline-PL and Baseline-NS, which
highlights that using only the naive self-paced learning scheme
tends to be limited by highly noisy pseudo labels. It increases
the recall yet has a much lower precision due to the lack of dis-
crimination capability for false-positive ambiguous structures.
AR-SPL-NoSPL prominently promotes the segmentation perfor-
mance over Baseline-PL and Baseline-NS via abandoning all
pseudo labels and learning only from sparse annotations sug-
gested by uncertainty estimation. It requires the similar training
cost to AR-SPL yet has an inferior segmentation performance due
to the absence of the self-paced learning for leveraging potentially
clean pseudo labels with low learning difficulties on the fly. Com-
pared with other counterparts, AR-SPL integrates all proposed
components and achieves the best segmentation performance,
which is statistically comparable to Baseline-FS and even exhibits
a slight superiority without significant difference. This is because
that when the uncertainty is used to guide sparse annotation-
based manual refinement, more attention with a large weight x
would be paid to these difficult regions during model training.
Moreover, compared with Baseline-FS, AR-SPL significantly
reduces the annotation cost, i.e., only 24.82% annotation time is
required to label 3.46% image regions. Although it costs more opti-
mization time for alternating minimization, such increase of opti-
mization time is fairly slight considering the largely reduced
annotation time, and it is also acceptable since no human-
related labor is involved in optimization procedure. These advan-
tages of AR-SPL demonstrate the contribution of each component
for the safety (without performance deterioration) and efficiency
(with minimal annotation cost) when dealing with noisy pseudo
labels.



Table 1
Quantitative evaluations for training cost and segmentation performances of all methods that use different components in the ablation study, such as the fully supervision (FS),
the pseudo label generation (PLG), the naive self-paced learning scheme (SPL) and the sparse annotation-based manual refinement (AR). The best performance is highlighted in
bold, and its comparable performance is denoted by superscript c based on a two-sided Wilcoxon signed-rank test (p-value > 0.05).

Component Training Cost Segmentation Performance

FS PLG SPL AR # Annotated Superpixels (k) Annotation Time (h) Optimization Time (h) Recall (%) Precision (%) Dice (%)

Baseline-PL U 0 0 0 77.37 ± 9.58 56.57 ± 11.48 61.64 ± 10.42
Baseline-NS U 0 0 3.26 83.56 ± 7.28 43.60 ± 10.86 56.19 ± 9.60
AR-SPL-NoAR U U 0 0 11.57 86.86 ± 5.84 49.89 ± 7.27 63.09 ± 6.58
AR-SPL-NoSPL U U 11.64 16.32 11.74 82.07 ± 3.93 81.53 ± 5.49 81.72 ± 4.14
Baseline-FS U 336.00 65.11 3.24 81.44 ± 4.26 82.58 ± 5.35c 82.01 ± 4.21c

AR-SPL U U U 11.64 16.16 11.81 81.64 ± 4.11 82.69 ± 5.31 82.09 ± 4.08
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Manual refinement is performed by precisely annotating only
superpixels with high uncertainties, rather than extensively proof-
reading the entire image which is a slow and labor-intensive pro-
cess. To investigate the feasibility of this uncertainty-based
suggestive annotation for local manual refinement, we show in
Fig. 7 the relationship between the adopted model-vesselness
uncertainty and segmentation error. At different uncertainty levels,
we measure error rates of segmentation results for all images,
obtaining a normalized joint histogram of uncertainty and segmen-
tation error rate. Then, we also calculate the average error rate
with respect to different uncertainty levels and present the error
rate as a function of uncertainty, i.e., the red curve in Fig. 7. The
results demonstrate that the majority of pixels have correct seg-
mentation predictions (low error rate) with low uncertainties.
The error rate becomes gradually higher with the increase of
uncertainty, indicating that the segmentation error can be cap-
tured by a higher uncertainty value. Therefore, the uncertainty-
based suggestive annotation enables a reliable local manual refine-
ment for potential segmentation errors, providing a cost-effective
alternative for whole-image proofreading.

3.4. Comparison with other uncertainty estimations in suggestive
annotation

To demonstrate the advantage of the proposed adaptive model-
vesselness uncertainty (MVU-ada) for a more efficient manual
intervention, we compare it with other uncertainty estimations
in the same AR-SPL framework:

� Model uncertainty (MU) [23], which is estimated by MCDO, as
shown in Eq. (8).
Fig. 7. Normalized joint histogram of uncertainty and error rate. The average error
rate is depicted as a function of uncertainty by the red curve. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
� Vesselness uncertainty (VU), which is derived based on the ves-
selness map generated from vessel enhancement, as shown in
Eq. (9).

� Model-vesselness uncertainty with a fix tradeoff (MVU-fix),
which is a hybrid uncertainty estimated as the weighted maxi-
mization of model uncertainty and vesselness uncertainty, as
shown in Eq. (10). Unlike MVU-ada, it adopts a fixed weight
g ¼ 0:2 rather than the dynamic weight formulated in Eq.
(11), which is chosen by a grid search for the best validation
performance.

Fig. 8 shows different uncertainty maps and their corresponding
queried regions in iteration 1 and iteration 8 during the training
process. For iteration 1 (i.e., the early training stage), MU and
MVU-fix show noticeably high uncertainties for curvilinear back-
ground structures and thus cause biased querying operations for
them, especially for ribs as highlighted by white arrows. In con-
Fig. 8. Visual comparison of different uncertainty maps and their corresponding
queried regions in iterations 1 and 8 of AR-SPL. The uncertainty maps are visualized
by heatmaps, and the queried regions are visualized in green. The white arrow
highlights the biases of the MU and MVU-fix to the curvilinear ribs in iteration 1.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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trast, MVU-ada is similar to VU in iteration 1 and performs a direct
querying for target coronary arteries that occupy only a small set of
pixels in XA. Such direct querying for sparse vessels is expected to
be more essential in the early training stage for rapidly improving
model discrimination capability. For iteration 8 (i.e., the later train-
ing stage), VU generates the uncertainty map that is independent
of the callbacks from model updating. It queries even highly confi-
dent regions with respect to a relatively mature segmentation
model, challenging the model fine-tuning towards a higher conver-
gent accuracy. Owing to the proposed dynamic tradeoff, MVU-ada
consistently achieves the appropriate uncertainty maps and thus
enables the efficient manual intervention throughout the entire
training process. Its corresponding querying operations also focus
on challenging regions such as bifurcations, thin branches and ter-
minal vessels with attenuated contrast, effectively correcting the
systematic biases of noisy pseudo labels.

To investigate interaction efficiency of suggestive annotation
with different uncertainties, as shown in Fig. 9, we evaluate the
segmentation performance on test images with respect to the
incremental annotated superpixels in each training image. The seg-
mentation performance is gradually improved with the increase of
annotations, providing an incremental training process rather than
the typical fully supervised framework without manual interven-
tion. Vesselness uncertainty and model uncertainty show the com-
plementary strengths. Specifically, VU has a more rapid
performance improvement than MU in the early training stage,
as shown in Fig. 9(b), indicating that vesselness uncertainty pro-
vides the context-aware cue that is more efficient to guide model
updating in an early stage. In contrast, MU converges to a higher
dice score than VU, as shown in Fig. 9 (c), owing to the model
uncertainty for facilitating model fine-tuning towards a higher
convergent accuracy level. MVU-ada and MVU-fix combine both
of these uncertainties, exhibiting higher convergent accuracy than
VU and faster convergence rate than MU. Among all counterparts,
MVU-ada benefits from the dynamic tradeoff between model
uncertainty and vesselness uncertainty, leading to the best conver-
gent accuracy and the fastest convergence rate during model train-
ing. Its convergent accuracy is even comparable to Baseline-FS that
relies on tedious fully manual annotation. Moreover, the fastest
convergence rate of MVU-ada not only enables a minimal set of
annotations to reach the convergence accuracy (as shown in
Fig. 9(c)), but also maintains the most efficient manual interaction
Fig. 9. Evolution of dice score with respect to the annotated superpixels that are querie
training. Subfigure (a) shows the whole training process while subfigure (b) and (c) focu
purple box, respectively. (For interpretation of the references to colour in this figure leg
before model convergence (as shown in Fig. 9(a)), i.e., higher
dice score with even fewer annotations. It further provides a
promising application of this incremental training process in a
more cost-effective interactive scenario, where once the desired
accuracy is reached even before model convergence, MVU-ada
requires the minimal annotation cost and the training process
can be early stopped without more annotations further
involved.

Furthermore, for different uncertainty estimations, Fig. 10 pro-
vides a detailed comparison for their required annotation times
with respect to different accuracy levels. VU costs slightly less
annotation time than MU and MVU-fix when model accuracy is
fairly low in the early training stage, i.e., 77% Dice, yet it signifi-
cantly degenerates when the model accuracy is improved. It even
cannot finally converged to 82% Dice, as highlighted by the blue
arrow. Among all counterparts, the proposed MVU-ada consis-
tently requires the least annotation time for different dice scores,
indicating its fastest convergence rate, i.e., the most efficient man-
ual interaction, during model training. Especially for the conver-
gent Result 82% Dice, MVU- ada shows noticeably less annotation
time than MU and MVU-fix owing to the proposed dynamic trade-
off between model uncertainty and vesselness uncertainty.

3.5. Comparison with other weakly supervised learning frameworks

We further validate the significance of manual refinement when
learning from noisy pseudo labels. The proposed AR-SPL is com-
pared with noisy supervision-based training framework
(Baseline-NS), fully supervision-based training framework
(Baseline-FS), and the other state-of-the-art weakly supervised
learning frameworks that deal with noisy labels without the sparse
annotations-based manual refinement proposed in this work:

� Simple noise layer (Simple-NL) [15], which reduces label noise
via an explicit noise model, i.e., a linear layer on the top of the
softmax output.

� Complex noise layer (Complex-NL) [16], which improves the
explicit noise model in Simple-NL by an additional dependence
on feature vectors.

� Bootstrapping [17], which augments noisy labels with a notion
of perceptual consistency by a convex combination with the
current prediction of the model.
d based on different uncertainty estimations and involved incrementally in model
s on the early stage and the final model convergence, as bounded by the yellow and
end, the reader is referred to the web version of this article.)



Fig. 10. A comparison of annotation time per image with respect to different
desired dice scores. The blue arrow illustrates that VU cannot converge to 82% dice
score.
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� Self-paced fine-tuning network (SPFTN) [19], which excludes
potential label noise by a predefined diversity-based self-
paced regularizer.

Fig. 11 shows the segmentation results of CNNs trained in the
different frameworks. Compared with Baseline-NS that applies no
noise-robust training strategy, Simple-NL and Complex-NL achieve
fewer false positives for semi-transparent background structures
owing to their adopted noise models. Bootstrapping and SPFTN fur-
ther reduce false positives while leaving intractable false negatives
for coronary arteries. When introducing sparse annotations in
training images, AR-SPL prominently improves the segmentation
performance and approaches Baseline-FS. It enables the fine
extraction of the complete coronary trees without increasing false
positives in the background.

A quantitative comparison is presented in Table 2. The very lim-
ited advantage of classical weakly supervised frameworks can be
observed for their small superiorities over Baseline-NS. Despite a
slightly higher recall, they all suffer from significantly lower preci-
sion and dice score than Baseline-FS by a large margin. This perfor-
mance gap can be bridged when sparse annotation-based manual
Fig. 11. Visual comparison of different weakly supervised learning frameworks and basel
SPL and Baseline-FS, which respectively utilize sparse and fully manual annotations, the o
and false positives (highlighted in orange). (For interpretation of the references to colou
refinement is involved in the way proposed by AR-SPL, leading to
a comparable performance to Baseline-FS without statistically sig-
nificant difference.
4. Discussion

Precisely annotating coronary arteries in XAs is extremely
labor-intensive and time-consuming to train CNNs for vessel seg-
mentation. Noisy pseudo labels generated from vessel enhance-
ment provide an imprecise alternative that is free of manual
interaction, yet challenging the accurate segmentation perfor-
mance at test time. A practical problem is raised: how to learn from
these noisy pseudo labels safely without performance deteriora-
tion. Our work offers the first attempt to solve this problem from
a novel weakly supervised perspective using ‘‘inaccurate” supervi-
sion (i.e., noisy pseudo labels generated from vessel enhancement)
together with ‘‘incomplete” supervision (i.e., sparse manual anno-
tations suggested by model-vesselness uncertainty). These two
types of weak supervision are leveraged compactly via the pro-
posed AR-SPL, where noisy pseudo labels are first obtained by ves-
sel enhancement, and then refined simultaneously based on self-
paced learning and sparse annotations, in order to train an accurate
segmentation model with minimal manual intervention. The
experimental results indicate that, despite the very limited annota-
tion cost, our AR-SPL accomplishes the precise vessel extraction
and the effective suppression of background disturbance, which
is even comparable to the fully supervised learning.

Under a standard weakly supervised learning paradigm, some
works use only pseudo labels, and then refine label noise without
human interaction by leveraging noise-robust prior knowledge,
such as the learning difficulty [31,19] and perceptual consistency
[17]. However, the experimental results in Section 3.5 demonstrate
that using such prior knowledge alone causes noticeable perfor-
mance deterioration at test time. The reasons are twofold. On
one hand, noise-robust prior knowledge would lead to a biased
training process and cause overfitting of CNNs on pixels selected
by the predefined criterion. On the other hand, pseudo labels gen-
erated by vessel enhancement contain inevitable systematic errors,
which imply the intractable knowledge defect [25] and hamper the
accurate model training. Our proposed AR-SPL provides a simple
but powerful solution by using sparse annotations. Sparse manual
ines for vessel segmentation in XAs bounded by blue bounding boxes. Except for AR-
ther weakly supervised methods lead to obvious false negatives (highlighted in red)
r in this figure legend, the reader is referred to the web version of this article.)



Table 2
The performances of different weakly supervised methods and baselines. The best
performance is highlighted in bold, and its comparable performance is denoted by
superscript c based on a two-sided Wilcoxon signed-rank test (p-value > 0.05).

Method Recall (%) Precision (%) Dice (%)

Baseline-NS 83.56 ± 7.28 43.60 ± 10.86 56.19 ± 9.60
Simple-NL 83.20 ± 7.42 49.97 ± 12.13 61.04 ± 11.01
Complex-NL 83.37 ± 7.75 50.84 ± 13.48 61.40 ± 12.16
Bootstrapping 83.21 ± 6.81 53.81 ± 9.82 64.66 ± 7.90
SPFTN 85.80 ± 6.08 51.51 ± 7.34 64.10 ± 6.57
Baseline-FS 81.44 ± 4.26 82.58 ± 5.35c 82.01 ± 4.21c

AR-SPL 81.64 ± 4.11 82.69 ± 5.31 82.09 ± 4.08
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annotations act as an additional cue to progressively enrich the
training variety and compensate knowledge defect in noisy pseudo
labels, effectively improving the segmentation performance to a
level comparable to fully supervised learning.

In addition, some other similar works [41,42] follow the self-
paced learning under an active learning paradigm, which accepts
only sparse manual annotations instead of exploiting noisy pseudo
labels. These annotations are suggested by the classical model
uncertainty without a context-awareness of vascular geometric
features in XAs. Differently from this active learning perspective,
the proposed AR-SPL additionally leverages pseudo labels gener-
ated from vessel enhancement, and guides sparse manual annota-
tions with a well-designed model-vesselness uncertainty. Our
framework offers several advantages. First, pseudo labels help
avoid the challenge of collecting initial annotations that would
be labor-intensive and time-consuming. They provide a noisy set
of initial annotations and thus can be used as a warm-start in
the active learning paradigm, which is free of manual intervention
and empirical settings. Second, our AR-SPL framework can reduce
the requirement for human-provided ground truth by exploiting
prior knowledge in pseudo labels such as the intensity distribution
and scale information. This knowledge can be obtained by vessel
enhancement without labor cost, leading to a beneficial feature
representation for coronary arteries in CNNs. Third, the adopted
model-vesselness uncertainty takes a customized consideration
of vessel structures and facilitates a more efficient manual inter-
vention than the classical model uncertainty, as shown in
Section 3.4.

To ensure the cost-effective manual intervention, we further
investigate the opportunities to alleviate the user’s annotation bur-
den using a suggestive annotation strategy with the proposed
model-vesselness uncertainty. One single uncertainty cannot
maintain the best interaction efficiency during model training.
For example, model uncertainty contributes to the cautious model
fine-tuning for a higher convergent accuracy, while hampered by a
slow convergence rate due to query redundancy, especially for an
early training stage. In contrast, vesselness uncertainty provides
a context-aware cue for model updating, contributing to solving
query redundancy and rapidly improving segmentation perfor-
mance in the early stage. However, it fails to achieve an effective
model fine-tuning and thus leads to poor convergent accuracy
due to its independence from the online training process. The pro-
posed model-vesselness uncertainty incorporates these comple-
mentary strengths by leveraging a dynamic time-dependent
tradeoff. Specifically, we assign a higher weight to vesselness
uncertainty in the early stage for rapid convergence, and then
increase the weight for model uncertainty in the later training
stage for a better convergent result. This well-designed combina-
tion strategy consistently minimizes the annotation cost across
the entire training process, enabling a cost-effective interactive
scenario.

The inflow of contrast agent is substantially affected by lumen
diameters and topological variations, leading to attenuated
contrast and thus large uncertainty regarding bifurcation points
and thin vessels. Manual refinement is suggested for these regions
as shown in Fig. 8, indicating a relatively concentrated distribution
instead of scattering over the complete coronary tree. Specifically,
queried annotations focus more on terminal branches with small
lumen diameters and topologically varying bifurcation points. This
concentrated distribution potentially simplifies manual interaction
and exhibits higher efficiency versus extensive proofreading over
the whole image.

Our method focuses on the vessel segmentation task in a speci-
fic medical application, i.e., the PCI surgical planning for coronary
artery disease. In the experiments, we have successfully tested
our method on the clinical X-ray angiograms during PCI procedure.
Nonetheless, application of our method to other vessels may need
application-specific modifications. For example, for retinal vessel
segmentation in color fundus images, the adopted layer separation
for pseudo label generation in our method would be highly limited
due to the indistinct motion cue of retinal vessels. A topology con-
straint [43] concerning branch length and lumen diameter would
be promising to improve pseudo label generation for retinal ves-
sels. Moreover, the suggestive annotation with model-vesselness
uncertainty requires additional designs since vascular features
vary widely for different organs and imaging protocols. It would
be of interest in the further to investigate the feasibility of adopting
our method to vessels from other organs and modalities.

In the experiments, we have validated our proposed method on
a clinical X-ray angiogram dataset, where the size is relatively
small as compared with many large-scale datasets of natural
images such as PASCAL VOC [44], COCO [45] and ImageNet [46].
For the segmentation of coronary arteries in XA, it is especially dif-
ficult to collect a very large dataset, since pixel-wise manual anno-
tations are highly labor-intensive and require special expertise
regarding the thin tubular lumen and complex topology of vessel
tree. Therefore, our relatively small dataset is feasible to investi-
gate annotation efficiency, which fits well with our motivation of
reducing annotation cost in clinical practice. Nonetheless, it may
be unclear whether the generalization capability of the proposed
AR-SPL would be affected by the size of dataset. The further work
would validate our method on a larger dataset, including more
patients, more angiographic viewing angles and different concen-
trations of injected contrast agent. In addition, despite the incre-
mental fine-tuning, the proposed AR-SPL is still limited by a
considerable time interval between two manual interventions
since the updating of model parameters in Eq. (3) requires rela-
tively long time. In the further, it also would be of interest to
develop a continuous workflow for suggestive annotation by
scholastic gradient partial descent (SPADE) [47] and online learn-
ing scheme [48].
5. Conclusions

In this work, we propose a novel weakly supervised training
framework for vessel segmentation in XAs in order to safely and
efficiently learn from noisy pseudo labels generated by vessel
enhancement. Towards the safety of learning without performance
deterioration, label noise is handled effectively by the proposed
AR-SPL, where sparse manual annotations provide online guidance
for the naive self-paced learning. Furthermore, towards interven-
tion efficiency with minimal annotation cost, we propose a
model-vesselness uncertainty with a dynamic tradeoff for sugges-
tive annotation, based on the geometric vesselness and the CNN
trained on the fly. Experiments show that compared with fully
supervised learning, the proposed AR-SPL achieves very similar
segmentation accuracy, and only costs 24.82% of the annotation
time to label 3.46% of the image regions. Such highly reduced
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annotation cost reliably alleviates the burden on the annotator and
brings about potential advantages in clinical applications for PCI
surgical planning, such as a segmentation-based stenosis detection
and reconstruction.
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