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A B S T R A C T

Early diagnosis and timely treatment of ocular diseases are vital to prevent irreversible vision loss. Color
fundus photography is an effective and economic tool for fundus screening. Since few symptoms are visible in
the early disease stages, automatic and robust diagnosing algorithms according to color fundus photographs
are in urgent need. Existing studies concentrate on image-level diagnoses treating the eyes independently
without utilizing the useful correlation information between the left and right eyes. Besides, they commonly
target only one or several ocular disease categories at a time. Considering the importance of both patient-level
diagnosis correlating bilateral eyes and multi-label disease classification, we propose a patient-level multi-label
ocular disease classification model based on convolutional neural networks. Specifically, a dense correlation
network (DCNet) is designed to tackle the problem. DCNet consists of three major modules, a backbone CNN
for feature extraction, a spatial correlation module for feature correlation, and a classifier for classification
score generation. The backbone CNN extracts two sets of features from the left and right color fundus
photographs, respectively. Subsequently, the spatial correlation module captures the pixel-wise correlations
between the two feature sets. Then, the processed features are fused to get a patient-level representation.
The final disease classification is conducted with the patient-level representation. Adopting a multi-label soft
margin loss, the effectiveness of the proposed model is evaluated on a publicly available dataset, and the
classification performance is improved with a large margin compared with multiple baseline methods.
1. Introduction

Retinal damage caused by persistent ocular diseases can lead to
irreversible vision loss and even blindness [1–3]. Timely diagnosis
is vital for effective treatment. To aid in detecting ocular diseases,
different imaging techniques have been developed. Among them, opti-
cal coherence tomography (OCT) and color fundus photography (CFP)
are widely employed [4]. OCT generates cross-section images of the
retina, and retinal thickness can be measured to evaluate the eye
conditions. CFP records the interior surfaces of the eyes to monitor
possible disorders. Both tools have been proved to be effective for early-
stage ocular disease diagnosis. Nevertheless, CFP is a more economical
and efficient approach, and periodic fundus examination with CFP is
recommended for asymptomatic adults, especially for the elder popu-
lations [5]. Unfortunately, common ocular diseases, such as diabetic
retinopathy, cataract, age-related macular degeneration, etc. (Fig. 1a),
progress with few initial visible symptoms, which makes it difficult
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to achieve accurate diagnoses in the early stages. Moreover, manual
inspection of the generated large quantities of CPFs is laborious and
time-consuming. In backward areas, there are far from enough radiol-
ogists available to perform the manual analysis. Automatic models are
in urgent need not only to alleviate the pressure on ophthalmologists
but also to improve the accuracy of imaging-based diagnosis.

Recently, deep neural networks (DNN), particularly convolutional
neural networks (CNN), have made significant contributions to the
medical imaging field [6–8]. In respect to ocular disease diagnosing,
CNNs have shown promising performance in various aspects ranging
from disease classification to object detection. A pixel-wise classifica-
tion approach was used by Liefers et al. to detect the fovea centers
in OCT images [9]. A two-stage CNN model was designed by Meng
et al. to detect the optic disks in CFPs [10]. CNNs were adopted by
Lee et al. to segment intraretinal fluid in OCT images [11]. Similarly,
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Fig. 1. (a) Example color fundus photographs (CFPs). (b) Complicated cases where the two eyes are infected with different ocular diseases or infected with more than one disease
type. The ocular diseases infected by respective eyes are extracted from the provided diagnostic keywords, which cannot be directly transformed into the different classification
labels. The first row presents the CFPs from the left eyes and the second row displays the corresponding CFPs from the right eyes. N, D, G, C, A, H and M refer to patients
diagnosed to be normal, diabetes, glaucoma, cataract, age-related macular degeneration, hypertension, and myopia.
Roy et al. developed an encoder–decoder network, ReLayNet, to seg-
ment the different retinal layers as well as accumulated fluid in OCT
images [12]. Zhao et al. combined CNNs and fully connected random
fields to segment retinal vessels in CFPs [13]. Palyout et al. utilized
image-level annotations to help improve the segmentation accuracy of
retinal lesions with a multi-task CNN architecture [14].

Compared to object detection and segmentation, much more atten-
tion has been paid to classifying ocular diseases with CNNs. Gulshan
et al. classified CFPs according to the grade of diabetic retinopa-
thy [15]. Li et al. conducted glaucomatous optic neuropathy clas-
sification [16]. Age-related macular degeneration classification was
also frequently investigated [17–19]. Transfer learning with ImageNet
pretrained models, such as the Inception network, was found to be very
effective in this task of ocular disease classification [20,21]. Ensem-
ble learning with multiple base networks could achieve even better
classification performance [22]. These studies validate the feasibility
of applying CNNs to achieve high sensitivity and specificity for ocular
disease classification.

Despite the encouraging performance achieved, only a few works
address the issue of multi-label ocular disease classification with CFPs
[23], where one patient can have more than one type of ocular disease.
Considering the high possibilities of patients get affected by multiple
ocular diseases, optimizing models that can accommodate multi-label
ocular disease classification is necessary. In the work of Li et al. it was
identified that the coexistence of myopia leads to high false-negative
predictions for glaucoma patient classification [16]. Consequently, even
though existing studies generated satisfactory results in their specific
tasks, they might not be applicable to real situations where complicated
cases are inevitable (Fig. 1b).
2

In addition to the aforementioned issue, there is a lack of studies
conducting patient-level ocular disease diagnosing. The majority of ex-
isting publications solve the problem in an image-level manner through
independently analyzing the CFPs obtained from the left and right
eyes. Works have suggested that the bilateral eyes are highly correlated
with respect to the ocular disease progression [24], which indicates
that patient-level diagnosis considering information from bilateral CFPs
should contribute to a more effective approach. Besides, patient-level
diagnosis can work as a pre-screening of patients with high risks. It
is also more applicable when long-terms continuous monitoring of
high-risk patients is in need [25]. Furthermore, most current CNN-
based ocular disease classification studies directly utilize the networks
developed for natural image analysis without architecture optimization,
which limits the classification accuracy.

In this study, we tackle the problem of CFP-based patient-level
multi-label ocular disease classification. Specifically, An elaborately
designed CNN network, named as dense correlation network (DCNet),
is proposed. The inputs to DCNet are pairs of CFPs obtained from
the left and right eyes. The outputs are the corresponding possibilities
of the patient getting infected by different ocular diseases. DCNet is
composed of three modules, a backbone CNN module for the extraction
of features from the individual left and right CFPs, a spatial correlation
module for the feature refinement and fusion, and a classification mod-
ule for the generation of classification outputs. Our proposed DCNet
achieves inspiring classification performance on a public CFP dataset.
A preliminary version of this work has been presented as a conference
abstract [26]. In this paper, we comprehensively analyze the results.
Particularly, we discuss the performance enhancement with regard to
increasing network depth and clearly show the relationship between
model complexity and model performance. In summary, our contri-
butions are three-fold: (1) We propose a CNN model for the task of
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patient-level multi-label ocular disease classification. Seven types of
ocular diseases (six types in Fig. 1 and a remaining type of other
diseases) can be processed simultaneously with a single network. (2)
A novel module, SCM, is designed to effectively fuse the features
extracted from the left and right CFPs. SCM refines the extracted
features by taking their correlations into consideration. (3) Significantly
enhanced classification performance is achieved on a publicly available
CFP dataset by our proposed model with the elaborately designed
feature correlation and fusion method compared to multiple baseline
methods with direct feature concatenation.

2. Method

2.1. Network architecture

The overall architecture of the proposed DCNet is shown in Fig. 2a.
DCNet has three major modules, the backbone CNN, the spatial corre-
lation module (SCM), and the final classifier.

2.1.1. Backbone CNN
The backbone CNN extracts two independent sets of features from

the inputted pairs of CFPs. Given the left and right CFPs, 𝐼𝑙 and 𝐼𝑟
(𝐼𝑙 , 𝐼𝑟 ∈ R𝐻×𝑊 ×3, 𝐻 and 𝑊 refer to the height and width of the
input CFPs, 3 is the three color channels), the outputs of backbone
CNN are 𝐹𝑙 and 𝐹𝑟 (𝐹𝑙 , 𝐹𝑟 ∈ Rℎ×𝑤×𝑐 , ℎ,𝑤, and 𝑐 are the height,
width, and number of extracted features), respectively. Since there
is no information exchange or fusion during the feature extraction
process, no registration between the paired CFPs is required. We adopt
different ResNet architectures truncating the fully-connected layers as
our backbone CNNs [27].

2.1.2. Spatial correlation module
SCM receives the two feature sets from the backbone CNN and

outputs two corresponding feature sets by taking the correlations be-
tween them into consideration. The details of the proposed SCM is
illustrated in Fig. 2b. With the two input feature sets 𝐹𝑙 and 𝐹𝑟, pixel-
wise relationship between them is calculated. Inspired by the design of
non-local neural networks [28], each of the two feature sets are firstly
transformed into query, key, and value features (𝐹𝑙𝑞 , 𝐹𝑙𝑘, and 𝐹𝑙𝑣 for
features of the left CFPs, and 𝐹𝑟𝑞 , 𝐹𝑟𝑘, and 𝐹𝑟𝑣 for features of the right
CFPs, where 𝐹𝑙𝑞 , 𝐹𝑙𝑘, 𝐹𝑟𝑞 , 𝐹𝑟𝑘 ∈ Rℎ×𝑤×𝑐′ and 𝐹𝑙𝑣, 𝐹𝑟𝑣 ∈ Rℎ×𝑤×𝑐′′ ) by 1 × 1
convolutions:

𝐹𝑙𝑘 = Linear(𝐹𝑙; 𝜃𝑙𝑘), 𝐹𝑟𝑘 = Linear(𝐹𝑟; 𝜃𝑟𝑘), (1)

𝐹𝑙𝑞 = Linear(𝐹𝑙; 𝜃𝑙𝑞), 𝐹𝑟𝑞 = Linear(𝐹𝑟; 𝜃𝑟𝑞), (2)

𝐹𝑙𝑣 = Linear(𝐹𝑙; 𝜃𝑙𝑣), 𝐹𝑟𝑣 = Linear(𝐹𝑟; 𝜃𝑟𝑣). (3)

where ‘‘Linear’’ represents a 1 × 1 convolution with 𝜃 referring to the
relevant parameters. 𝑐′ and 𝑐′′ are the dimensions of the transformed
query/key features and value features, respectively. We empirically set
𝑐′ = 𝑐′′ = 512.

Then, with the transformed features, the pixel-wise correlation
weights (𝑅𝑙←𝑟 ∈ R(ℎ×𝑤)×(ℎ×𝑤)) to aggregate information extracted from
the right CFP to that extracted from the left CFP is obtained as the inner
product normalized by sigmoid function:

𝑅𝑙←𝑟 ∈ R(ℎ×𝑤)×(ℎ×𝑤) = Sigmoid(𝐹𝑙𝑞𝐹
𝑇
𝑟𝑘) (4)

The correlation weights (𝑅𝑟←𝑙 ∈ R(ℎ×𝑤)×(ℎ×𝑤)) to aggregate information
extracted from the left CFP to that extracted from the right CFP can be
calculated in a similar way:

𝑅𝑟←𝑙 ∈ R(ℎ×𝑤)×(ℎ×𝑤) = Sigmoid(𝐹𝑟𝑞𝐹
𝑇
𝑙𝑘) (5)

The correlation weights capture the interactions between every loca-
3

tions in the paired CFPs. Once the weights are acquired, the two feature
sets from the backbone CNN are refined to 𝐹𝑙_𝑢𝑝𝑑𝑎𝑡𝑒 ∈ R𝑤×ℎ×𝑐′′ and
𝐹𝑟_𝑢𝑝𝑑𝑎𝑡𝑒 ∈ R𝑤×ℎ×𝑐′′ by multiplying the respective weight maps:

𝐹𝑙_𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅𝑙←𝑟 × 𝐹𝑟𝑣, (6)

𝐹𝑟_𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅𝑟←𝑙 × 𝐹𝑙𝑣. (7)

The last step in SCM is to fuse the features obtained from the
bilateral CFPs. As shown in Fig. 2b, the fusion is realized through
concatenation of four feature sets. The input left CFP feature set 𝐹𝑙
is concatenated with the corresponding updated left CFP feature set
𝐹𝑙_𝑢𝑝𝑑𝑎𝑡𝑒, and the input right CFP feature set 𝐹𝑟 is concatenated with
the updated right CFP feature set 𝐹𝑟_𝑢𝑝𝑑𝑎𝑡𝑒:

𝑆𝑙 = Linear([𝐹𝑙 , 𝐹𝑙_𝑢𝑝𝑑𝑎𝑡𝑒]𝑇 ; 𝜃𝑠𝑙), (8)

𝑆𝑟 = Linear([𝐹𝑟, 𝐹𝑟_𝑢𝑝𝑑𝑎𝑡𝑒]𝑇 ; 𝜃𝑠𝑟). (9)

where 𝑆𝑙 , 𝑆𝑟 ∈ Rℎ×𝑤×𝑐1 are the two outputs of SCM.

2.1.3. Classifier
The two output feature sets from SCM are transformed into two

feature vectors by global average pooling. They are then concatenated
before inputting into the final classifier module. The classifier con-
sists of two fully-connected layers, one with ReLu activation and one
without. The dimension of the concatenated features is reduced by the
first fully-connected layer. The exact feature dimension depends on the
backbone CNN utilized. Take ResNet-50 backbone CNN as an example,
the concatenated feature has a dimension of 4096. It is reduced to
512 by the first fully-connected layer. The second fully-connected layer
further reduces the features into a dimension of eight, which equals to
the classification categories. The eight-dimension features can then be
compared with the ground-truth disease classification labels, and the
network loss can be calculated accordingly.

2.2. Loss function

The classic cross-entropy loss for image classification is usually
employed following a softmax activation and it is more applicable
when the categories are exclusive. Thus, according to similar existing
studies [29–31], we employ a multi-label soft margin loss instead for
our multi-label ocular disease classification task:

𝐿 = − 1
𝐶

𝐶
∑

𝑐=1
𝑦[𝑐]𝑙𝑜𝑔(𝜎(�̂�[𝑐])) + (1 − 𝑦[𝑐])𝑙𝑜𝑔(1 − 𝜎(�̂�[𝑐])) (10)

here 𝑐 refers to the categories, 𝜎(⋅) is the sigmoid activation, 𝑦 ∈ {0, 1}
s the reference label, and �̂� is the output of the network.

.3. Dataset description

We instantiate our proposed model with a publicly available CFP
ataset. The dataset is provided by the 2019 University International
ompetition on Ocular Disease Intelligent Recognition (ODIR-2019).1
he dataset contains eight different classification categories, including
he normal control group (N) and seven disease groups (diabetes (D),
laucoma (G), cataract (C), age-related macular degeneration (A), hy-
ertension (H), myopia (M), and other diseases/abnormalities (O)). The
atient-level labels are generated with reference to both the CFPs and
dditional information, such as the age of the patient. In total, there
re 5000 cases with the original CFPs, and annotations of 3500 cases
re made publicly available. The distribution of the 3500 patient cases
mong the eight categories is shown in Fig. 3. These cases are utilized
o investigate the effectiveness of our proposed model. Considering
he relatively small data size, the 3500 cases are split into three folds
andomly with 1167, 1167, and 1166 cases, and cross-validation is
onducted by training on each combination of two folds and testing
n the remaining fold. Finally, the average results of the test folds of
hree cross-validation experiments are reported.

1 https://odir2019.grand-challenge.org.

https://odir2019.grand-challenge.org
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Fig. 2. (a) Network architecture of the proposed DCNet. The backbone CNN extracts features from both left and right CFPs from the same patients. The spatial correlation module
(SCM) simulate the relationship between the two sets of extracted features. The classifier generates the classification scores of the eight categories (the seven categories in Fig. 1
and one additional category for other diseases/abnormalities. ‘‘C’’ is feature concatenation. (b) Detailed architecture of SCM. ‘‘Linear’’ is a convolution layer with a kernel size of
1 × 1. ‘‘×’’ stands for matrix multiplication and ‘‘C’’ is feature concatenation.
Fig. 3. Patient distribution over the eight classification categories. Characters N,
D, G, C, A, H, and M have the same meaning as Fig. 1. O refers to other
diseases/abnormalities.

2.4. Implementation details

ResNets of different depths are utilized as our backbone CNNs to
investigate their influence on the feature extraction process. ImageNet-
pretrained models are employed as the initialization of the backbones.
Since the ODIR-2019 dataset was collected from different centers or
hospitals with different cameras, the CFPs come with different reso-
lutions. All CFPs are firstly resized to the same image resolution of
512 × 512. Then, random cropping of 448 × 448 image patches is
conducted as an image augmentation method for the network training.
During testing, center cropping is used instead.

All our deep neural networks are implemented with PyTorch [32].
Experiments are run on NVIDIA GeForce 1080Ti GPUs. Stochastic
4

gradient decent (SGD) optimizer is adopted to train the networks with
the multi-label classification loss function in Eq. (10). The learning rate
is initially set to 0.007, which is decayed according to the poly learning
rate decay policy 𝑙𝑟 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑟 × (1 − 𝑖𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙𝑖𝑡𝑒𝑟
)𝑝𝑜𝑤𝑒𝑟 [33]. The power is set

as 0.9. All experiments are run for 50 epochs and the results of the last
epoch are recorded.

2.5. Evaluation metrics

Four evaluation metrics, kappa score (𝑘 in Eq. (11)), 𝐹1 score (𝐹1 in
Eq. (12)), area under the receiver operating curve (AUC in Eq. (13)),
and average of the three (AVG in Eq. (14)), are calculated to evaluate
the classification performance of different models as suggested by the
official ODIR-2019 challenge. The statistics are calculated over the
whole dataset and averaged over the patients.

𝑘 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

𝑝𝑜 =
∑𝐶

𝑐=1 𝑇𝑃𝑐
∑𝐶

𝑐=1(𝑇𝑃𝑐 + 𝐹𝑁𝑐 )

𝑝𝑒 =
∑𝐶

𝑐=1 𝑇𝑃𝑐 ∗ (𝑇𝑃𝑐 + 𝐹𝑁𝑐 )
𝑁2

,

(11)

𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(12)

𝐴𝑈𝐶 = ∫

1

𝑥=0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))𝑑𝑥

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(13)

𝐴𝑉 𝐺 = 1 (14)
𝑘 + 𝐹1 + 𝐴𝑈𝐶
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Table 1
Ocular disease classification results with different backbone CNNs (without SCM).

Backbone CNN Fusion strategy Kappa 𝐹1 AUC AVG

ResNet-18
Summation 0.496 ± 0.009 0.891 ± 0.003 0.909 ± 0.003 0.765 ± 0.005
Multiplication 0.306 ± 0.123 0.869 ± 0.016 0.866 ± 0.026 0.680 ± 0.054
Concatenation 0.527 ± 0.003 0.894 ± 0.001 0.914 ± 0.002 0.778 ± 0.001

ResNet-34
Summation 0.547 ± 0.041 0.899 ± 0.007 0.920 ± 0.009 0.789 ± 0.019
Multiplication 0.426 ± 0.148 0.884 ± 0.016 0.897 ± 0.028 0.736 ± 0.064
Concatenation 0.554 ± 0.008 0.898 ± 0.001 0.917 ± 0.001 0.790 ± 0.003

ResNet-50
Summation 0.577 ± 0.024 0.904 ± 0.004 0.925 ± 0.004 0.802 ± 0.011
Multiplication 0.588 ± 0.028 0.904 ± 0.005 0.922 ± 0.007 0.804 ± 0.013
Concatenation 0.598 ± 0.014 0.905 ± 0.003 0.927 ± 0.003 0.810 ± 0.007

ResNet-101
Summation 0.593 ± 0.007 0.906 ± 0.003 0.927 ± 0.001 0.809 ± 0.003
Multiplication 0.604 ± 0.002 0.907 ± 0.001 0.928 ± 0.004 0.813 ± 0.001
Concatenation 0.604 ± 0.016 0.907 ± 0.003 0.927 ± 0.006 0.812 ± 0.009
Table 2
Ocular disease classification results with different backbone CNNs with SCM.

Backbone CNN Kappa 𝐹1 AUC AVG

ResNet-18 0.545 ± 0.009 0.895 ± 0.001 0.914 ± 0.004 0.785 ± 0.005
ResNet-34 0.596 ± 0.014 0.904 ± 0.003 0.924 ± 0.001 0.808 ± 0.006
ResNet-50 0.628 ± 0.005 0.910 ± 0.002 0.928 ± 0.002 0.822 ± 0.002
ResNet-101 0.637 ± 0.007 0.913 ± 0.002 0.930 ± 0.004 0.827 ± 0.003

where 𝐶 = 8 refers to the eight categories. 𝑁 is the number of samples
in the test set. 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 refer to true positive predictions,
alse positive predictions, true negative predictions, and false negative
redictions. 𝑇𝑃𝑅 and 𝐹𝑃𝑅 are true positive rate and false positive rate.

. Experimental results and analysis

Two sets of experiments are conducted. The first set is to investigate
he influence of backbone CNNs on the classification performance.
he second set to validate the effectiveness of the proposed spatial
orrelation module.

.1. Classification performance with different backbone CNNs

The backbone CNN is responsible for the independent extraction of
eatures from bilateral CFPs. Backbone CNNs of different depths extract
eatures of different abstraction levels. The proposed spatial correlation
odule (SCM in Fig. 2) is not included in this set of experiments. The

enerated features by the backbone CNN are fused through summation,
ixel-wise multiplication, or concatenation directly without a special
usion process.

Table 1 lists the detailed results. Three phenomena can be observed.
irstly, among the different fusion strategies, feature concatenation
orks the best. Pixel-wise multiplication is more suitable when deep
ackbone CNN is utilized. Secondly, better performance is achieved
ith deeper backbone CNNs. Comparing the results of models with
esNet-101 backbone and feature concatenation to those with ResNet-
8, the kappa score, 𝐹1, AUC, and the final AVG are increased by
.7%, 1.3%, 1.3%, and 3.4%, respectively. It indicates a better ocular
isease distinction ability of higher abstraction features. Finally, it is
lso observed that the performance plateaus at models with ResNet-
0 backbone, and the enhancement is very limited when replacing it
ith ResNet-101 backbone (Fig. 4). There are studies showing similar
atterns that network performance cannot improve linearly with net-
ork depth [34,35]. Three possible causes can be summarized. The first

s relevant to the gradient vanishing issue. The difficulty of network
ptimization increases with the network depth [34]. The diminishing
f feature reuse is the second cause, which leads to insufficient usage
f the generated large number of features for deep networks [35]. The
ast is due to limited available training samples, the network might not
e properly trained.
5

Table 3
Computational complexities of different network configurations with/without SCM.

Backbone CNN SCM FLOPs (G) Params (M)

ResNet-18 Without 14.6 11.7
ResNet-18 With 14.9 13.6

ResNet-34 Without 29.4 21.6
ResNet-34 With 29.8 23.7

ResNet-50 Without 33.0 25.8
ResNet-50 With 38.8 55.2

ResNet-101 Without 62.9 44.8
ResNet-101 With 68.7 74.2

3.2. Performance enhancement by the proposed spatial correlation module

Table 2 presents the results when SCM is enabled. The overall
performance trend with increasing of network depth is the same as
that without SCM. Introducing dense feature correlations through SCM
into the classification models consistently improves the classification
accuracy regardless of the backbone CNNs (Fig. 5). Take the model with
ResNet-50 backbone CNN as an example, utilizing SCM increases the
four metrics by 3.0%, 0.5%, 0.1%, and 1.2%, respectively. Paired t -tests
between the results obtained without and with SCM confirm that SCM
can significantly improve the classification performance characterized
by the kappa score, 𝐹1 score, and the final average score (with a p value
smaller than 0.05).

A similar performance plateau is observed when different backbone
CNNs are used. Characterizing by the final average score, networks
with ResNet-34 backbone increases AVG by 2.3% compared to ResNet-
18 backbone. Networks with ResNet-50 backbone increase AVG by
1.4% over ResNet-34 backbone. On the other hand, networks with
ResNet-101 backbone increases AVG by only 0.5% over ResNet-50
backbone. Considering the increased computational complexity with
the increased network depth, it might not be necessary to utilize the
deepest backbone CNN. We will discuss this in the following section.

3.3. Computational complexities of different models

To compare the classification performance in a fair manner, we
present the network complexities in Table 3 and plot the classification
metrics with regard to the floating point of operations (FLOPs, Fig. 6a)
and the network parameters (Fig. 6b).

Taking FLOPs or network parameters into consideration, the pro-
posed method can still outperform the baseline with a large margin.
Networks with ResNet-50 backbone and SCM can perform better than
baselines with ResNet-101 backbone with much fewer FLOPs. It again
validates that the highly accurate classification results of the proposed
method are not solely caused by the increased network complexi-
ties. The correlation between left and right CFPs is effective for the
patient-level ocular disease classification. As patient-level diagnosis is
important [25], it is necessary to take care of the information from
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Fig. 4. Classification performance with different backbone CNNs.
Fig. 5. Classification performance with different network configurations. * indicates significant difference between the two experiments with 𝑝 < 0.5 by t -test.
both CFPs to boost the classification performance. It is to be noted
that although the FLOPs increase caused by the introduction of SCM is
relatively small, the network parameters increase a lot, especially for
baselines with ResNet-50 and ResNet-101 backbones.

At the same time, from Fig. 6, it is clear that with SCM enabled,
increasing network depth from utilizing ResNet-18 backbone to uti-
lizing ResNet-50 backbone, the network performance increases almost
linearly with FLOPs. But continuously increasing the network depth
by adopting the ResNet-101 backbone brings only slight performance
6

enhancement. Therefore, if available computational power is limited,
it is not necessary to use very deep backbone CNNs, such as the
ResNet-101 backbone.

4. Conclusion

In this study, we developed a patient-level multi-label ocular disease
classification model, dense correlation network (DCNet). DCNet has
three major modules, a backbone CNN, a spatial correlation module
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Fig. 6. (a) Classification performance with different network configurations with respect to FLOPs. (b) Classification performance with different network configurations with respect
to network parameters.
(SCM), and a classifier. Our major novelty regarding the network
design lies in SCM, where pixel-wise feature correlation proceeds with
the two sets of features extracted from left and right CFPs by the
backbone CNN. The processed features are then concatenated to extract
a patient-level feature representation for the final patient-level ocular
disease classification. Extensive experiments on a public dataset, ODIR-
2019, were conducted to validate the effectiveness of the proposed
method, and the proposed method could always generate better results
than the corresponding baselines while possessing lower computational
complexities.

There are several limitations that exist in the current method that
should be addressed in our future studies. Firstly, because only patient-
level ocular disease category labels were provided, we were not able
to compare the results of the proposed method to those conduct-
ing image-level classifications. Secondly, to control the computational
complexities, the backbone CNNs to extract features from left and
right CFPs were shared. Finally, although the distribution of patient
cases over the different categories was heavily unbalanced, we did not
address this issue explicitly. Meanwhile, although our current approach
did not require the registration between the inputted two CFPs, we
believe it is helpful when the two CFPs are roughly registered, which
can be done under the guidance of segmented key biomarkers (such as
the optic disk and macula).

The proposed method can be easily extended beyond ocular disease
classification. It can be modified and optimized to similar tasks, such
as the breast cancer diagnosis that needs to take bilateral breasts into
consideration. Besides, the method can also be employed to conduct
multi-modal image analysis as long as the correlations between the
different modal images are important for the end tasks.
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