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Abstract. Liver Perfusion gives important information about blood supply of
liver. However, in daily clinical diagnosis, radiologists have to manually mark
the perfusion position in time-sequence images due to the motion of liver caused
by respiration. In this paper, we propose a novel hybrid method using a varia-
tion of active contours and modified chamfer matching to automatically detect
the liver perfusion position and measure the intensity with a single shape prior.
The experiment is taken on abdomen MRI series and the result reveals that after
extracting liver’s rough boundary by active contours, precise perfusion positions
can be detected by the modified chamfer matching algorithm, and finally a refined
intensity curve without respiration affection can be achieved.

1 Introduction

Liver perfusion is a quantitative measurement of blood flow of liver, which plays im-
portant role in providing information in the assessment and treatment of various liver
diseases. For example, it can be used as a noninvasive and repeatable technique in diag-
nosis of acute rejection in the liver transplant [1]. In clinic, by injecting a contrast agent
into the liver while taking abdomen MRI images in a fixed time intervals, the concentra-
tion of the contrast agent can be tracked and analyzed. The change of perfusion intensity
is tracked in time, resulting in a perfusion curve.

However in the clinical application, the problem is that the liver moves because the
patient breathing throughout the series, resulting in the change of perfusion position.
Moreover, it is unpractical to keep patients to hold their breaths during the process.
So the radiologist has to manually mark the position, which is very tedious and time-
consuming.

So far, the automated perfusion measurement process has received a large amount
of attentions. In [2], Sebastian modeled the problem using registration method. In his
method, Fast Marching Method (FMM) and Level Set Method[3,4,5] were used to seg-
ment the liver region, then a distance vector transform was employed to identify the
perfusion position along the time sequence images. The result was promising, but the
stop criteria of FMM strongly depends on the size of liver region that radiologists may
not know exactly. It can lead to over or under segmentation when liver contours are
not clear enough. Both of the situations will effect the perfusion localization precision.
In [6], a new approach was proposed to get kidney perfusion curves that present the
transportation of the contrast agent into the kidney. Then the curves are used in the
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classification of normal and acute rejection in kidney transplants. It used a deformable
model with shape prior constrains which is a mean sign distance map of a lot of seg-
mented kidneys. However, it is not suitable to our application. Firstly, it needs a lot of
prior shape models, which radiologists can hardly achieve; secondly, liver’s shape and
size change significantly from different views or different slices, which brings more
difficulties to build a mean model.

In our paper, in order to help radiologists automatically tracking the liver’s perfu-
sion position with little manual intervention, we employ a hybrid method which con-
tains a variation of active contours [7] segmentation and a modified chamfer matching
algorithm[8,9]. Active contour model is used to segment the liver region which has low
gradient response on boundary. The segmentation results are distance maps which can
be changed to contour lines. Then a modified edge pixel based chamfer matching algo-
rithm is applied to match these contour lines to a single template shape contour whose
perfusion position has been marked manually in advance. Finally, we can get all the
abdomen MRI slices’ relative perfusion position to the template’s.

The outline of the paper is as follows: section 2 is a brief review of the active contour
model and the chamfer matching algorithm; section 3 illustrates our hybrid method and
section 4 presents the experiment results; section 5 is the discussion and conclusion.

2 Active Contours and Chamfer Matching

2.1 Active Contours

Active contours can be used to segment objects automatically, which is based on the
evolution of a curve. Its objective is to minimize a metric function defined by the cur-
vature. For example, starting with a curve around the object to be segmented, the curve
moves toward its interior normal and stops on the boundary of the object.

Assume Ω be a bounded open subset of R2, C=∂Ω its boundary, and C(s):[0,1]→R2

be a parameterized curve, μ0 is the image. The classical active contour model is defined
bellow [7]:

J1(c) = α
∫ 1

0
|C′(s)|2ds + β

∫ 1

0
|C′′(s)|ds − λ

∫ 1

0
|∇u0(C(s))|2ds (1)

Here, α, β, and λ are positive parameters. The first two terms control the smooth-
ness of the evolution which is called the internal energy, and the third term makes the
evolutional curve toward the object boundary called the external energy.

Edge-stop criteria is used to stop the evolving curve on the object’s boundary. The
edge-stop criteria is in the form of an edge stopping function and it depends on the
gradient of image μ0 whose boundary is defined by gradient. A typical edge stopping
function [10] is:

g(μ0) =
1

1 + |∇Gσ(x, y) ∗ μ0(x, y)|p , p ≥ 1 (2)

Where Gσ(x, y) ∗ μ0(x, y) is the convolution of μ0 with the Gaussian:

Gσ = σ
−1/2e−|x

2+y2 |/4σ (3)

It is obvious that the edge stopping function is close to zero in the region where the
gradient response is strong and such region always is the boundary of the object.
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2.2 Chamfer Matching

Chamfer matching was firstly introduced in [9] by Barrow, which is a method that
matches edge points or other low level feature points extracted from a 2D image. There
are two binary images involved in the process. The first is a source image in the form of
a distance map, and the second is a template image containing object’s shape contour.
After transforming the template image according to the source image, the shape contour
overlaps on the source image’s boundary region. An average of the overlapped pixels’
value on the source image is the measure of the correspondence between them. A perfect
match means that the average is close to zero. Transformations with different parameters
are applied and the one with minimum average is selected. Often the root mean square
average distance(rms) is used as the measure:

rms = ((v2
1 + v2

2 + · · · + v2
N)/N)1/2/3 (4)

Here, vi is the source image’s pixel which overlapped by the shape contour and N is
the number of these pixels.

3 Hybrid Perfusion Analysis

In our MRI images, part of the liver boundary is not clear and has no gradient defined, so
we employ a modified energy minimization active contour model called active contours
without edges proposed in [10]. Our segmentation method is a simplified implementa-
tion of [10]. It is based on the following two observations: firstly, the movement of the
liver is slight,and the rotation can be ignored. Secondly, as the upper half of the liver
has strong gradient response, it always can be segmented well. But the low half nearly
has no gradient response defined and its segmentation result is bad.

There are four steps in our hybrid method. Firstly, set a cycle’s center point and ra-
dius as initial curve for the modified active contours segmentation and all the images
can share one center point and radius. In the second step, we apply active contours with-
out edges method to yield contour lines and edge pixels, where the segmentation result
is in the form of distance map and the liver shape can be extracted by edge detecting
algorithm on that distance map. The third step involves manually selecting an image,
refining the contour to make it a nearly complete liver shape as a template contour im-
age for chamfer matching and mark the perfusion position. The forth step is to focus
on applying modified chamfer matching to the segmented result, and calculate the quo-
tient of matched edge pixels number and the rms in (4). After matching, all slices are
related to the template image, and their perfusion positions can be gotten. Finally, we
can measure the perfusion intensity and draw the perfusion curve.

3.1 Set Initial Curve’s Center Point and Radius

Because the modified active contours segmentation method is based on curve evolution,
we use a circle as the initial curve whose center and radius need to be set carefully.
Theoretically, the center point should be at the center of the liver, but as mentioned
above, the upper half of the liver has strong gradient response. So it is better to put
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the center point near the center of the upper half of the liver. The radius should be big
enough to make the initial circle cover most of upper half part of the liver.

Once we have set one image’s center point and radius, these parameters could be
used in other images, which is based on the observation that the liver’s total movement
is small respect to patient’s breathing.

3.2 Segmentation Using Active Contours Without Edges

In our segmentation stage, we restrict the curve evolving process in a sub-area marked
by manual which covers the whole liver shape. Because the movement of the liver is
slight, the sub-area’s definition is suitable to all of the images. In this way we can reduce
the cost of active contour model’s calculation.

The original energy function of active contour model introduced by [10] is:

F(c1, c2,C) = μ · Length(C) + ν · Area(inside(C))

+λ1

∫
inside(C)

|μ0(x, y) − c1|2dxdy

+λ2

∫
outside(C)

|μ0(x, y) − c2|2dxdy (5)

Here, c1 and c2 represent the inner and outside curve’s average intensity, respectively.
In the above, the length of curve C and the area of inside curve C are regularizing term.
If we write the third term as F1(C) and the forth term as F2(C) while ignoring λ1 and
λ2, we can see that if the curve C is outside the object, F1(C) > 0, F2(C) ≈ 0; if inside
the object, F1(C) ≈ 0, F2(C) > 0; if partial inside and partial outside the object, then
F1(C) > 0 and F2(C) > 0; finally, if the curve C is exactly on the object boundary, then
F1(C) ≈ 0 and F2(C) ≈ 0. Thus the energy function is minimized [10].

By formulating the energy function using level set, the evolving curve C can be
represented by the zero level set of signed distance function φ. After simplifying the
energy function and adding the curve term, the liver can be segmented by solving the
Euler-Lagrange partial differential equation:

∂φ

∂t
= δ(φ)[μ · div(

�φ
| � φ| ) − ν − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0 (6)

Fig. 1. Active contours procedure. (left) The initial stage. (middle) The middle stage. (right) The
final stage.
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The time complex is: O(n2). After nearly 1500 iterations a roughly liver contour ’s
distance map can be gotten. The modified active contours segmentation method works
well but not fast enough to be a real-time application. Also it needs a lot of parameters
tweaking, and still very application specific. For example it can not segment images
which are very dark. Fig. 1 shows the evolving curve’s initial, middle, and final stages.

3.3 Select and Refine Template Image

After segmentation, we get the distance map of liver’s shape. We use an approximation
method to extract the zero level set which is the boundary of the liver. If a pixel Φ(i, j)
on the zero level set, the sign of 4 neighbourhood pixels’ sign can’t be the same, in
mathematics:

max(φi, j, φi+1, j, φi, j+1, φi+1, j+1) > 0

min(φi, j, φi+1, j, φi, j+1, φi+1, j+1) < 0 (7)

Once getting the shape contour, we need to manually select an image, refine the
contour to make it to a nearly complete liver shape which is used as a template contour
image for the modified chamfer matching. Also need to mark the perfusion position in
the selected image. Then the modified chamfer matching algorithm can get other slices’
perfusion position relate to the template image. Fig. 2 shows the selected shape before
and after the refinement.

Fig. 2. Selection of the template image. (left) shape before refinement. (right) shape after refine-
ment.

3.4 Modified Chamfer Matching

In chamfer matching, the two input images are not symmetrical. The source image is
a distance map which is formed by assigning each pixel a value to the nearest edge
pixel. The template image is a binary image containing the shape want to match. In
our application, the active contour model’s evolving result is naturally a distance map
and the template image is selected and refined in step 3, where the two images are
from different slices. Because of the low quality of our MRI image series, it is always
a challenge to distinguish liver’s boundary region with others, which results in a very
noisy distance map.
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To solve this problem, we propose two methods. Firstly, the noise part of the distance
map is ignored, which can be realized by deleting the corresponding noisy pixels in the
template image. So these noise regions will not influence the root mean square average.
Secondly, the hit edge pixels’ number is introduced. After transformation, the template
image is aligned to the source image. The corresponding pixel in source image near
zero means it is on the boundary of liver shape. These pixels are called hit edge pixels
and the more the hit edge pixels, the better they are matched. So, let vi be the hit edge
pixel and N be the number of them, we want to get the maximum of following formula
under different transformations:

F(N, vi) =
N

((v2
1 + v2

2 + · · · + v2
N)/N)1/2/3

(8)

Then we can get the X and Y axis’s relative transformation dxi and dyi of the ith image
to the template image’s perfusion position. Assume x0 and y0 are the template image’s
perfusion position, and xi, yi are the ith image’s, we have:

xi = x0 + dxi

yi = y0 + dyi (9)

4 Experiments

We implement the active contour model using Level Set to solve the partial difference
equation and modified chamfer matching in C program language. To evaluate our im-
plementation of the proposed hybrid liver perfusion analysis method, we use a series
of two-dimensional 256 × 256 abdomen MRI images. They are taken with a GE Med-
ical Systems Genesis Signa HiSpeed CT/i system at the Shanghai First People Hospital,
and the parameters are: slice thickness 15.0, repetition time 4.7, echo time 1.2, magnetic
field strength 15000, flip angle 60 degrees.

The experiments are performed on a PC with Pentium-M 1600Mhz, 512Mb RAM.
Most part of liver’s contour can be extracted from the segmentation result by find-
ing the hit edge pixels after the modified chamfer matching. In order to compare the

Fig. 3. Comparison between our segmentation and FMM+Level Set Method. From left to right
are: hit edge pixels; complete liver shape by connecting hit edge pixels; segmented liver by our
method using level set method to smooth; segmented liver by FMM+Levle Set Method.
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segmentation quantity to FMM + Level Set Method, we connect the contour and make
it complete. By taking it as an initial zero level set for level set method, we can get
smooth segmented liver shape after 20 iterations. It is compared to the segmentation
result which only use FMM + Level Set Method. Fig. 3 shows the comparison between
our model to FMM + Level Set Method. It shows that FMM(2500 iterations) + Level
Set Method(200 iterations) only can segment the upper part of the liver, while more
iterations will result in over-segmentation. Our method has the potential to segment the
whole liver more precisely.

The perfusion curve is confirmed by radiologists from the Shanghai First People’s
Hospital. Our hybrid method can effectively compensate the liver’s movement. Fig. 4
shows the perfusion intensity curve, comparing to the perfusion curve ignoring liver’s
movement by using a fixed position across the whole series.

Fig. 4. Liver perfusion intensity Curve. Points labeled ’x’ are obtained by our hybrid method and
they are smoothed by Gaussian filter. It is compared to the result of the original method using a
fixed position across the whole series.

5 Conclusions

This paper introduce a hybrid method which contains active contour model and cham-
fer matching algorithm to automatically detect the liver perfusion position and measure
the intensity. The experiment reveals that the hybrid method can segment most part
of the liver and the modified chamfer matching algorithm can get other slices’ rela-
tive perfusion position to the selected template slice. The modified chamfer matching
algorithm is efficient because it not only calculates the rms(4), but also takes the num-
ber of matched edge pixels into consideration. We also compare our segmentation re-
sult to FMM+Levle Set Method which reveals that our hybrid method with level set
smoothing has the potential to segment the liver region correctly even there has lower
gradient.
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The future work is to extend the approach to automatically locate perfusion area in
3D volume data, in order to meet the challenge of more complex movement of the liver.
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