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Abstract In this paper, we propose a fast multistage hy-
brid algorithm for 3D segmentation of medical images. We
first employ a morphological recursive erosion operation to
reduce the connectivity between the object to be segmented
and its neighborhood; then the fast marching method is used
to greatly accelerate the initial propagation of a surface front
from the user defined seed structure to a surface close to the
desired boundary; a morphological reconstruction method
then operates on this surface to achieve an initial segmen-
tation result; and finally morphological recursive dilation is
employed to recover any structure lost in the first stage of the
algorithm. This approach is tested on 60 CT or MRI images of
the brain, heart and urinary system, to demonstrate the robust-
ness of this technique across a variety of imaging modalities
and organ systems. The algorithm is also validated against
datasets for which “truth” is known. These measurements re-
vealed that the algorithm achieved a mean “similarity index”
of 0.966 across the three organ systems. The execution time
for this algorithm, when run on a 550 MHz Dual PIII-based
PC runningWindows NT, and extracting the cortex from brain
MRIs, the cardiac surface from dynamic CT, and the kidneys
from 3D CT, was 38, 46 and 23 s, respectively.
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Introduction

One of the basic problems in medical imaging is to precisely
segment structures of interest from a huge dataset, accu-
rately represent them, efficiently visualize them and perform
measurements appropriate for diagnosis, surgery and therapy
guidance, or other applications [1,2]. Most current segmen-
tation algorithms applied to medical imaging problems only
detect the rough boundaries of the structures in two dimen-
sions (2D), and as such do not satisfy the requirement of high
accuracy required of many medical applications. The contin-
uing evolution of computer-aided diagnosis, image-guided
and robotically-assisted surgery, mandates the development
of efficient, accurate three dimensional (3D) segmentation
procedures.

Segmentation techniques can be divided into classes
in many ways [3,4], according to different classification
schemes, however model-based and region-based techniques
represent the two main groups.

Model-based procedures include “snake” algorithms
(deformable model, active contours etc.), as initially pro-
posed by Kass et al. [5], and level set methods (aswell as
fast marching methods), proposed by Osher and Sethian [6].
These techniques are based on deforming an initial contour
or surface towards the boundary of the object to be detected.
The deformation is obtained by minimizing a customized en-
ergy function such that its local minima are reached at the
boundary of the desired structure. These algorithms are gen-
erally fast and efficient but the outcomes are often low in
accuracy for the following reasons.

Since the stopping term of the deformation evolution de-
pends on the image gradient flow being approximately zero,
this often forces the contours to stop several voxels away
from the desired boundary.Thus the active contour some-
times does not match the boundary of the structure accurately,
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Fig. 1 Proposed multistage hybrid segmentation scheme. (1) Recursive erosion; (2) the fast marching method; (3) Morphological reconstruction;
(4) recursive dilation

especially in regions with steep curvature and low gradient
values.

Since a surface tension component is incorporated into
the energy function to smooth the contour, it also prevents
the contour fully propagating into corners or narrow regions.
Increasing the number of the sample nodes along the con-
tour can improve the situation, but at a significant increase
in computational cost.

The existence of multiple minima and the selection of the
elasticity parameters can affect the accuracy of the outcome
significantly.

Region-based algorithms include region growing [7],mor-
phological reconstruction [8] and watershed [9]. Since these
procedures are generally based on neighborhood operations,
and examine each pixel during the evolution of the edge,
the outcomes are usually highly accurate. On the other hand,
although there are several optimized algorithms in the liter-
ature [10,11], they are generally computationally intensive.

In this paper, we propose a new 3D hybrid segmentation
algorithm, which works in a multistage manner to perform
segmentations rapidly and precisely [12]. A flow chart of the
algorithm is shown in Fig. 1. In the first stage, we employ a
morphological recursive erosion to reduce the connectivity
between the object and its neighboring tissues. Then a fast
marching method is employed in the second stage to greatly
accelerate the initial propagation from the user-defined seed
structure to the vicinity of the boundary of object. In the third
stage, we employ a morphological reconstruction algorithm
[8] to refine the propagation to achieve a highly accurate
boundary. At the end of the segmentation procedure, mor-
phological recursive dilation is implemented, using the same
number of iterations as recorded in stage one, to recover

regions lost during the initial erosion, but at the same time
avoiding re-connection to the surrounding structures. The
segmented result may be presented to the user by volume
rendering (ray casting) or surface rendering (matching cube)
methods.

There are several segmentation algorithms described in
the literature to facilitate medical image visualization and
manipulation [13–21]. Most of them deal with medical im-
ages in a 2D manner, and are limited to particular application
studies. Computational time is often not addressed. In con-
trast, our approach performs full 3D implementations, and
is tested by a variety of application studies including neu-
rological, cardiac and urinary tract datasets. We discuss the
computational effort required for each of the three typical
clinical scenarios.

The remainder of this paper is organized as follows. In the
second section, we present a brief reviewof fast marching
method and morphological reconstruction techniques, while
third section describes our multistage hybrid segmentation
algorithm. We demonstrate this algorithm in three study cases
using neurological, cardiac and urinary tract datasets in the
fourth section, and follow in the fifth section with a valida-
tion experiment using three 3D datasets. The robustness and
accuracy of our approach are discussed in the last section.

Fast matching and morphological reconstruction

Level set and fast marching

The level set method [22] is an interface propagation algo-
rithm that represents a curve as the zero level set of a function,
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Fig. 2 Level set function and
zero level set φ = 0. A 2D front
(zero level set) in (a) is
propagated outwards,
represented by the 3D level sets
in (b), (c) and (d), respectively

one dimension higher than the original (i.e. a 2D contour is
represented as zero level set of a 3D function). Instead of
tracing the interface itself, the level set method builds the
original curves (so-called front) into a level set surface φ

(a hyper surface), where the front propagates with a speed
F in its normal direction. To avoid complex contours, the
current front φ(x, y, t = i) is always set at zero height
φ = 0 as depicted in Fig. 2. Hence, the level set evolution
equation for the moving hyper surface can be presented as a
Hamilton–Jacobi equation:

φt + F |∇φ| = 0. (1)

The benefit of employing this “one-dimension-higher” con-
cept is that even though the front (zero level set φ = 0) can
become wildly contorted, the level set surface φ will always
be well- behaved. All the complicated problems of contour
breaking and merging are more easily handled in this envi-
ronment. A full discussion of these concepts is beyond the
scope of this paper; instead the reader is referred to [22] or
Sethian’s instructional web page.1

The level set method is designed for problems in which
the speed function can be positive in some places and nega-
tive in others, so that the front can move both forwards and
backwards.

The fast marching method [22] is a special case of the
level set approach. Suppose, we now restrict ourselves to the
particular case of a front propagating with a speed F , which
is either always positive or always negative. This restriction

1 http://math.berkeley.edu/∼sethian/Explanations/level_set_
explain.html

allows us to simplify level set formulation. If we assume
T (x, y) be the time when the curve crosses the point (x, y),
the surface T (x, y) satisfies an Eikonal equation where the
gradient of surface ∇T is inversely proportional to the speed
of the front F :

|∇T |F = 1. (2)

The fast marching method is designed for problems in which
the speed function never changes sign, so that the front is
always moving forward or backward and the front crosses
each pixel point only once. This restriction makes the fast
marching approach much more rapid than the more general
level set method.

With respect to a rapidly computing segmentation result,
we employ the fast marching method in our approach to per-
form the initial propagation of a contour from a user-defined
seed to an approximate boundary.Aspeed term gI (x, y, z) is
computed based on image gradients and applied to the front,
which forces it to stop near object boundaries:

gI (x, y, z) = 1

1 + |∇(Gσ ∗ I (x, y, z)| . (3)

In the above, Gσ ∗ I . I denotes the convolution of the image
with a Gaussian smoothing filter with standard deviation.
The term ∇(Gσ ∗ I (x, y, z)) is essentially zero except when
the image gradient changes rapidly, in which case the value
becomes large and the propagation speed approaches zero.
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Fig. 3 Morphological reconstruction where regions in marker image are used to select regions of the mask image to be reconstructed. a The
processing in a 2D binary image. b The procedure along a simple scan-line of a gray scale image

Morphological reconstruction

Mathematical morphology is a powerful methodology for the
quantitative analysis of geometrical structures. It consists of a
collection of theoretical concepts, nonlinear signal operators,
and algorithms aiming at extracting objects from images.We
employ the standard technologies of recursive erosion, recur-
sive dilation, and morphological grayscale reconstruction in
this research. More details can be found in [23,24].

We define a 3D image f as a subset of the 3D Euclidean
space ( f ∈ R3), and a 3D structuring element k ∈ R3. The
four basic operations can be defined as follows:

Dilation:

f ⊕ k =
⋃

b∈k

({a + b|a ∈ f }), (4)

Erosion:

f � k =
⋂

b∈k

({a − b|a ∈ f }), (5)

Opening:

f ◦ k = ( f � k) ⊕ k, (6)

Closing:

f • k = ( f ⊕ k) � k. (7)

Recursive dilation, recursive erosion, and morphological
reconstruction [8] defined below are based on these four basic
operations:

Recursive dilation:

F
i⊕K =

{
F if i = 0

(F
i−1⊕ K ) ⊕ K if i ≥ 1,

(8)

Recursive erosion:

F
i�K =

{
F if i = 0

(F
i−1� K ) � K if i ≥ 1

(9)

Morphological reconstruction:

Bi = (Bi−1 ⊕g k) ∩ | f |G
(

Bi ∈ R3, i = 1, 2, . . .
)

(10)

In the above, i is a scale factor and K is the basic structur-
ing element (e.g. 1 pixel radius disk). ⊕g denotes a dilation
operation in grayscale, and | f |G represents the mask of the
operation, achieved via a threshold operation using a gray
level G. The iteration in (10) is repeated until there is no
further change between Bi−1 and Bi .

Recursive erosion is employed here to reduce connectivity
of objects from neighboring tissues while recursive dilation
recovers the region lost during the reduction after the objects
have been totally segmented. Each step employs the same
number of iterations N .

Morphological reconstruction is a very accurate and effi-
cient tool for recovering the object on a pixel-by-pixel basis.
The seed, which results from the output of the fast march-
ing algorithm, is recursively grown under the supervision of
the mask until it converges to a stable shape. Morphological
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reconstruction operations on both binary and grayscale im-
ages are depicted in Fig. 3.

Multistage hybrid segmentation approach

Our 3D segmentation algorithm is a multistage procedure,
which is composed of four major stages (Fig. 1):

Stage 1 Reduce the connectivity between the object region
and the neighboring tissues. Recursively erode the input 3D
image using a structuring element base (e.g. a sphere with 1
pixel radius) until the desired object region is completely
separated from the neighboring tissues, as determined by
the operator. Record the iteration number N for later use
in stage 3. This step is designed to prevent overflow during
the propagation in stages 2 and 3.

Stage 2 Perform initial evolution of the front.The fast
marching method is employed here to initially propagate the
userdefined seed to a position close to the boundary. It per-
forms rapidly, typically less than 20 s for a 256 × 256 × 100
volume, running on a 550 MHz Dual PIII-based personal
computer.

Stage 3 Refine the contours created in stage 2. Since the
speed function in the fast matching method falls to zero
sharply, the front could stop a few voxels away from the real
boundary. Here, a grayscale morphological reconstruction
algorithm is employed to refine the front as a “final check”.
The output from stage 2 is employed as marker, while the
original image is used for the mask.

Stage 4 Recover the lost data elements from stage 1. During
the recursive erosion in stage 1, part of the object (usually
around the edges) is also often eliminated. To recover these
lost components, the recursive dilation method is employed.
The reconstructed object surface is dilated recursively using
the same number of iterations N as recorded in stage 1, which
results in the recovery of the object surface to the “original”
position.We note that the resultant image will not in general
exactly correspond to the “original” image, but be smoothed,
since erosion, followed by dilation corresponds to an “open-
ing” operation. It nevertheless removes most of the noise sur-
rounding the desired boundary. However, if we use a sphere
with 1 pixel radius as the structuring element, and employ
a small number of iterations to reduce the connectivity, the
surfaces of smooth convex structures may be recovered accu-
rately.

Finally, the segmented result may be visualized by either
surface or volume-rendering methods.

Fig. 4 A snapshot of the user-interface to control the segmentation
software and visualize its results

Experimental results

Software and source data

We developed a segmentation environment, “TkSegment”,
based on the visualization toolkit (VTK) and the Python lan-
guage, into which our multistage hybrid segmentation algo-
rithm was integrated. The user-interface of the package is
shown in Fig. 4.

The source data employed in our experiments include 60
CT or MRI datasets from brain, heart, and kidney studies.
One of the 5 brain MRI datasets is the standard CJH27 image
volume derived from an average of 27 T1 weighted images of
a normal brain [25]. We also employed this volume in the vali-
dation study described later. CJH27 is a 181×217×181 voxel
volume, with isotropic 1 mm3 voxels. The other four T1- or
T2-weighted neurological MRI datasets are 256×256×124
volumes. Five groups of canine CT datasets were employed
for the cardiac study. Each was a dynamic volume, acquired
with a gated acquisition technique on an 8-slice GE helical
CT scanner, consisting of 86 slices at each of 10 equally
spaced snapshots during the cardiac cycle. The images were
512 × 512 pixels (0.35mm×0.35mm), each with an axial
spacing of 1.25 mm. Five CT datasets were employed in
the kidney example. These volumes comprised 512 × 512
(0.5 mm2) pixels per slice, and 130 slices spaced by 1.25 mm.

We applied our segmentation algorithm to these 60 vol-
ume datasets. A Pentium III 550 MHz dual CPU desktop
computer running MS-windows NT was employed to run the
segmentation. The results of these experiments are described
below.
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Fig. 5 Examples of CJH27 brain where the source (a) is segmented to (b) (volume rendered), and segmented brain with its transparent skull is
shown as (c) (surface rendered)

Case study

Brain images We applied our algorithm to five MRI T1 or T2
head scans. One of the volumes (CJH27) is shown in Fig. 5a.
The segmentation result is shown in Fig. 5b, and the seg-
mented brain associated with its transparent skull is shown
in Fig. 5c.

The segmentation procedure was applied to all the five
scans. The average computing timewas 38 s for each volume.
We considered this to be sufficiently rapid to classify as “near
real time” segmentation. The accuracy of the segmentation
result is discussed below in Sect. Validation.

Heart images Five dynamic CT scans of beating hearts, each
containing ten individual volumes throughout the cardiac cy-
cle, were used in this study. Each of the ten images was seg-
mented individually. Although the segmentation of a beating
heart is more difficult than a brain due to the more com-
plex anatomy as well as the presence of the artifacts and
non-isotropic image resolution, our hybrid approach handled
these data in a robust manner – in spite of such potential prob-
lems. Examples of the segmented results are shown in Fig. 6a
and b which represent the segmented volume of diastolic and
systolic phases, respectively.

The average segmentation time for one of these volumes
is 215 s, which is significantly longer than for the brain,
due to the additional time required to segment the blood
vessels. However, if the blood vessels are removed early
in pre-processing, computational time reduces dramatically
to 46 s.

Kidney images For the kidney example, we employed five
CT datasets to test our approach. At the second stage (fast
marching as illustrated in Fig. 2), we initiated the procedure
using a separate seed in each kidney to speed up the process-
ing. After the process was initiated, the resulting fronts in
both kidney regions propagated independently and concur-
rently. Fig. 7a shows a pair of kidneys associated with the
vessels, while Fig. 7b displays the kidneys surrounded by
ribs and spine.

Fig. 6 Examples of two of the ten segmented heart volumes in a cardiac
cycle. a Diastolic phase. b Systolic phase

The average segmentation time for kidneys alone is 23 s
(e.g. Fig. 7b). However, if the propagation processing in-
cludes the renal vessel system, the time typically increases
to approximately 280 s (e.g. Fig. 7a).

From the results of these experiments, we can conclude
that, in terms of providing satisfactory artifact-free segmented
results, our hybrid algorithm is robust across a range of typ-
ical clinical image datasets.

Validation

The segmentation results on the 60 experimental datasets
were examined by our clinical colleagues and deemed to
be sufficiently accurate for the purposes of further medical
applications.

Three volumes were chosen for quantitative validation.
CJH27 (Fig. 7) was selected from the neurological image
group because it forms the basis of a simulated MR dataset
for which “ground-truth” is known. This standard brain was



Int J CARS (2006) 1:23–31 29

Fig. 7 Examples of the
segmented kidney. a Apair of
kidneys associated with vessels
(volume rendered). b Apair of
kidneys associated with ribs and
spine (surface rendered)

generated from a set of 3D “fuzzy” anatomical models [25].
Each model represents a typical tissue class (white matter,
gray matter, CSF, etc.). This model was then used as input
for a MR simulator2 that produces a realistic MR volume
image for which “ground-truth” is known with respect to its
components. Other volumes were chosen from cardiac and
kidney datasets. For the latter two examples, contours manu-
ally traced by an expert were employed as the gold standard.

To quantify the segmented results, we used the similar-
ity index definition introduced by Zijdenbos [26], which is
related to a reliability measure method known as the kappa
statistic. Consider C1 and C2 as a segmented result and the
gold standard, respectively. The similarity between C1 and
C2 is given by S ∈ [0, 1] and defined as:

S = 2N (C1 ∩ C2)

N (C1) + N (C2)
. (11)

Here N (C) is the number of pixels included in the binary
image C. This index is sensitive to the size of both the images
(C1 and C2) and their relative locations. S = 0 indicates no
overlap, while S = 1 represents a perfect agreement. Zijden-
bos states that S > 0.7 indicates excellent agreement. The
relationship between the separation of two volume surfaces
and the similarity index can be described by the following
simple example. Assume a sphere volume C1 with radius
100 voxels (similar to a brain volume) and another sphere
volume C2 with a radius of 99 voxels. The similarity index
between these two volumes is S = 0.97.

The total error between the gold standard and the auto-
matically segmented result is 0.037 measured on the basis
of the similarity index, i.e. S = 0.963. The main differences
between them are distributed in four areas, which are color
coded and shown in Fig. 8. Red, blue, green, and orange rep-
resent the regions of non-overlap between the two images, of
blood vessels in the sagittal sinus, edges of the frontal lobes,
brainstem, and edges of cerebellum, respectively. Most of
the differences were found in the area of the sagittal sinus,
which accounts for 73% of the error. While most of these
vessels were carefully excluded from the gold standard, our
automatic segmentation procedure included them as part of

2 http://www.bic.mni.mcgill.ca/brainweb/.

Fig. 8 Error distribution between two volumes. Color coded regions
are the difference between (a3) and (b3) indicating the errors in the
area of blood vessel in the sagittal sinus (red), edges of the frontal lobe
(blue), edges of cerebellum (orange), and brainstem (green)

the brain. Even though there are only a small number of
voxel differences at one location at the edges of the fron-
tal lobe, this source nevertheless accounts for 21% of the
errors, due to the large surface area of the lobe. The third
source of error occurs at the edges of the cerebellum, account-
ing for 4% while 2% of error occurs at the bottom of the
brainstem.

The sagittal sinus area was the only part of the brain that
was over-segmented, as seen in Fig. 8. The frontal lobe edges,
cerebellum, brainstem, and a small vascular area were all
under-segmented. One cause of the under-segmentation is
the strict setting of the halting criterion of the propagation
to prevent the over-segmentation. Another reason is that the
gold standard not only includes white and gray matter, but
also includes CSF, which was excluded in our segmentation.

The similarity indicies of the experimental results are shown
in Table 1. The CJH27 brain achieved a similarity index of
0.963. The validation results from other two volumes are
quite similar to the result with CJH27, with a similarity in-
dex of 0.956 being obtained from the heart segmentation and
a 0.978 being obtained from the kidney study. The average
index across all modalities was 0.966.
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Table 1 The similarity index of the experimental results

Dataset Gold standard Auto result Similarity index
(voxels) (voxels)

CJH27 25,62,601 25,33,055 0.963

Heart 26,37,084 26,71,856 0.956

Kidney 8,86,123 8,85,649 0.978

Average – – 0.966

Discussion

This approach achieves highly accurate segmentation results
for a variety of input datasets. Our method identifies and
reconstructs the structure of the organ for high quality visu-
alization across a variety of conditions, even in the imperfect
world of routine clinical-quality images. Additionally, we
believe that it represents the first near real time, full 3D seg-
mentation approach tested in different application areas. The
discussion below focuses on two aspects of the algorithm –
its robustness and performance including executing time and
accuracy.

Robustness

Robustness of the multistage hybrid segmentation approach
was tested by 60 medical datasets in both MRI and CTmo-
dalities. As described in Sect. Validation, the segmentation
results of the multi-modality datasets were found to be of
sufficient quality for medical visualization and other med-
ical applications in the area of image-guided surgery and
therapy, computer-aided diagnosis and robotically-assisted
surgery. Both research data and clinical data were employed
in our validation experiments, and no failed segmentations
were reported even in low quality clinical images. Apart from
the CJH27 dataset, all of the employed datasets were typical
diagnostic-quantity clinical images. Note that while the car-
diac images were obtained from a research study using dogs,
the scan protocol was similar to that employed for human
studies.

Performance

Model-based methods, such as active contour algorithm can
perform “real time” segmentation in 2D slice processing,
where the segmentation results are usually sufficiently accu-
rate for specific applications. Region-based segmentation
methods such as conventional region-growing methods or
morphological operation can achieve a highly accurate seg-
mentation result, but require more computational times.Based
on our test using VTK’s built-in algorithms and running in
the same computing environment, morphological operations
alone require 8 min to segment CJH27 brain.MacDonald [17]

presented a deformable surface method to extract inner and
outer surfaces of cerebral cortex. His approach achieved a
high quality brain surface model, but required 30 h of time
on a Silicon Graphics Origin 200 workstation running at
180 MHz. Compared to the existing algorithms, we believe
that our hybrid approach represents a significant improve-
ment.

As described in the Introduction section, our hybrid ap-
proach has been optimized for 3D volume segmentation. It
combines the speed advantage of model-based methods with
the high accuracy of region-based methods, resulting in an
algorithm that is both fast and accurate, which was validated
by our experiments achieving an average similarity index of
0.966.

Conclusion

We presented above a new fully 3D, precise, reliable seg-
mentation approach for visualization using a fast multistage
hybrid algorithm. The approach takes advantage of the speed
and accuracy of both model-based and region-based segmen-
tation methods. It was tested on 60 3D image volumes in a
variety of application studies and image modalities, demon-
strating excellent segmentation results. Quantitative valida-
tion demonstrated an average accuracy of 0.966, measured
on the basis of a similarity index.

While the procedure currently requires a minimal userin-
teraction to place seeds, and to identify the stopping criterion
at the erosion stage, we propose to improve the algorithm to
make it fully automatic. We are considering the morphologi-
cal “Top-hat” transformation [27], which can extract regions
of high intensity of similar size to the objects to be segmented.
The detected regions can then be employed as initial seeds.
This step is still quite computational expensive, and we there-
fore chose not to use it in our current work.

As demonstrated by the dramatic increase in segmenta-
tion speed when vascular structures were removed from our
volumes, the segmentation of vessels remains a bottleneck.
We believe that dealing with vessels separately, using skele-
ton techniques [24], in place of the fast marching algorithm,
could significantly improve the efficiency of this step.
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